首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
气流扰动是决定大口径、长焦距光学系统波前检测精度的重要因素,进而影响光学系统装调的效率和质量.针对该问题,提出采取主动随机送风来抑制气流扰动对波前检测的影响.实验结果表明,通过主动随机送风,可以提高系统波前检测的稳定性,Zernike系数测量结果标准差由0.04降低到0.01以下.进一步地,在主动随机送风条件下完成了一...  相似文献   

2.
使用大口径平行光管检测大型光学设备或元件时,平行光管的自身误差会影响检测结果,故本文提出了一种消除光学检测结果中平行光管引入误差的新方法。该方法使用干涉仪获取平行光管和光学检测系统的出射波前信息并以37项Standard Zernike Phase多项式进行拟合;通过两组系数相减分离平行光管引入误差,再配合ZEMAX中建立的等效被检光学系统的仿真模型模拟真实系统的出射光锥,最终获得被检光学系统真实的出射波前信息。利用ZEMAX中的光学系统模型验证了该方法在大口径光学检测工作中的可行性;使用焦距为1 597mm,口径为150mm的小型平行光管、焦距为50mm的光学镜头进行了实验。实验结果表明:使用该方法获得的被检光学系统出射波前与真实波前的PV值误差小于0.005λ,RMS值误差小于0.001λ,可以满足实验室中对被检光学系统成像质量参数检测的精度要求。  相似文献   

3.
为了高精度地检测长焦透镜的透射波前,提出了在Zygo干涉仪的平面光路中加入一个二元衍射元件提供参考波前的计算全息法(CGH)。介绍了计算全息法检测长焦透镜透射波前的理论,设计并研制了高精度计算全息板,并将其用于大口径长焦距透镜透射波前检测。理论分析和实际检测结果表明:该方法系统误差小,测量重复性精度优于0.004λ(2σRMS),与常规的菲索干涉法测量球面透镜透射波前得到的结果一致,从而验证了提出测量方法的可靠性。最后,详细分析了二元衍射元件的制造误差对透射波前检测的影响,得到测量误差(PV)小于λ/10。文中的结果表明提出的计算全息法可有效缩短光路,提高测量精度,对长焦透镜波前检测有重要的应用价值。  相似文献   

4.
1200mm望远镜开环液晶自适应光学系统设计   总被引:2,自引:1,他引:1  
为验证液晶自适应光学成像技术校正大气湍流所引起的波前像差的有效性,提高光学系统的能量利用率,应用Ze-max软件设计出了与1200mm望远镜匹配的开环液晶自适应光学系统。针对开环自适应光学系统探测光路和校正光路自身的特殊要求,制定了具体的公差原则,并应用Zemax软件进行了公差分析。分析表明,设计的自适应光学系统具备较宽松的公差条件,容易加工和装调。评价了该光学系统的成像性能,结果表明,设计的自适应光学系统的MTF曲线接近衍射极限,光学传递函数的模在50lp/mm时可达到0.4,而成像CCD的极限分辨率为31lp/mm,充分地利用了CCD相机的分辨资源。该自适应光学系统与1200mm望远镜对接匹配后的组合焦距为19.9m,F数为16,PV值为0.0314λ。  相似文献   

5.
构建了一套桌面自适应光学系统性能测试系统,用以验证97单元自适应光学系统的校正能力。该测试系统主要由光源、快速控制反射镜、变形镜、Shack-Hartmann波前传感器、高速波前处理器、扰动相位屏等部件组成,分别利用干涉仪和Shack-Hartmann波前传感器的数据控制变形镜进行光路的展平校正,得到了系统的静态校正精度。然后,测试了精密跟踪系统的校正能力。最后,利用扰动相位屏模拟不同的大气扰动条件,以成像相机图像的斯特列尔比(SR)为指标,在不同目标亮度下测试了自适应光学系统的动态校正能力。测试结果显示:该97单元自适应光学系统的静态波像差校正精度的RMS接近λ/20;两种控制模式下精密跟踪系统的误差抑制带宽分别达到了15 Hz和39 Hz;系统在强湍流情况下,动态校正后的成像分辨率基本优于3倍衍射极限。由此表明,97单元自适应光学系统能够有效地校正像差,提高成像分辨率。  相似文献   

6.
基于光学全息原理,分析了激光全息技术校正光学成像系统像差的机理和方法,建立了全息记录实验系统,用于校正口径500 mm、低质量球面反射镜光学系统对有限远物体成像时的像差。采用原光路再现的方法,通过比较像差校正前后的干涉图样和成像结果,验证了该校正方法的可行性。实验结果表明,校正后该系统剩余波像差约为λ/8。  相似文献   

7.
为了利用磁流变加工实现对大口径平面光学元件波前中频误差的控制,研究了磁流变抛光去除函数的频谱误差校正能力和磁流变加工残余误差抑制方法。首先,比较了模拟加工前后元件中频功率谱密度(PSD1)误差和元件PSD曲线的变化,分析了磁流变去除函数的可修正频谱误差范围。然后,利用均匀去除方法分析了加工深度、加工轨迹间距和去除函数尺寸等磁流变加工参数对中频PSD2误差的影响,提出了抑制中频PSD2误差的方法。最后,对一块400mm×400mm口径平面元件的频谱误差进行了磁流变加工控制实验。实验显示:3次迭代加工后,该元件的波前PV由加工前的0.6λ收敛至0.1λ,中频PSD1误差由5.57nm收敛至1.36nm,PSD2由0.95nm变化至0.88nm。结果表明:通过优化磁流变加工参数并合理选择加工策略,可实现磁流变加工对大口径平面光学元件中频误差的收敛控制。  相似文献   

8.
大口径数字波面检测技术的研究   总被引:2,自引:0,他引:2  
现代光学系统多采用大口径的光学元件来提高系统的测试精度。数字波面干涉仪是一种高精度光学元件检测设备,但目前传统的技术无法满足检测大口径光学元件的要求。在普通数字波面干涉仪的基础上,采用目标函数多孔径拼接技术,能很好地解决大口径光学元件检测问题,最终得到较完整的波前信息。  相似文献   

9.
小型可见光双视场光学系统的研制   总被引:2,自引:1,他引:1  
基于光学设计基本理论,设计了一种体积小,跟踪范围可以达到整个前半球的可见光双视场光学系统.系统由前部集束系统,中间光路转折系统及后部成像系统3部分组成.集束系统采用望远镜式结构,用于改变光束的口径;光路转折系统采用库德光路,由4片反射镜组成,用于转折光路及扫描;成像系统由长焦成像系统和短焦成像系统组成,分别形成两个视场的像,用于目标识别与跟踪.光学系统焦距分别为60 mm和120 mm,设计传递函数在58 lp/mm处均大于0.5.加工装调后进行了成像试验验证,结果表明,该系统能够同时完成大视场及小视场的图像获取,在可视范围内成像质量满足系统总体要求.  相似文献   

10.
波前探测器是自适应光学系统的一个关键部分,用来探测由于大气湍流引起的入射光波前畸变。本文通过分析和比较,选用ICCD形式的Shack-Hartmann波前探测器,作为人造信标自适应光学系统的波前探测器。理论分析与实验结果表明:探测器的动态范围与微透镜口径、焦距及探测器工作波长有关;影响探测器波前探测精度的因素有光量子起伏噪声、探测器读出噪声和探测器中光学系统成像质量。  相似文献   

11.
曲艺  苏东奇 《光学仪器》2015,37(6):522-525
设计了一款口径为30.48cm高精度斐索激光干涉仪参考镜,其F数为0.82,参考面半径为224.99mm。所设计的参考镜其透射波前峰谷值为0.095λ,均方根值为0.028λ,透射波前斜率最大值为11μrad。理论分析了参考镜的回程误差对面形检测精度的影响,其最大值为0.29nm。利用Zemax光学设计软件对参考镜进行了仿真分析,仿真与实验结果表明,该标准镜头可满足精度1nm的元件面形检测需求。  相似文献   

12.
光子计数型Shack-Hartmann波前探测器研究   总被引:1,自引:0,他引:1  
波前探测器是自适应光学系统的一个关键部分,用来探测由于大气湍流引起的入射光波前畸变。本文通过分析和比较,选用ICCD形式的Shack-Hartmann波前探测器,作为人造信标自适应光学系统的波前探测器。理论分析与实验结果表明:探测器的动态范围与微透镜口径、焦距及探测器工作波长有关;影响探测器波前探测精度的因素有光量子起伏噪声、探测器读出噪声和探测器中光学系统成像质量。  相似文献   

13.
针对大口径离轴非球面系统加工与装调的难点,提出了非球面光学系统共基准加工与检测的方法,对该方法的基本原理和实现过程进行了分析和研究。当光学系统的主镜和第三镜面形的RMS值优于λ/10(λ=632.8nm)时,对主镜和第三镜进行共基准装调和测试,并进行背板一体化装嵌,然后利用离子束对其进行一体化共基准加工。结合工程实例,对一大口径非球面系统口径为724mm×247mm的非球面主镜和口径为632mm×205mm的第三镜进行了共基准加工与检测,最终利用离子束共基准一体化精抛光得到主镜和第三镜面形的RMS值分别为0.019λ和0.017λ,满足光学成像。  相似文献   

14.
Zemax软件在离轴三反射镜系统计算机辅助装调中的应用   总被引:7,自引:2,他引:5  
利用Zemax光学设计软件与自编计算机辅助装调软件,实现了对大口径、长焦距、无中心遮拦离轴三反射镜光学系统的装调.通过Zemax软件模拟光学系统的失调模式,得到整个光学系统的波前像差,把波前像差代入到自编的复杂光学系统计算机辅助装调软件中,计算出光学系统的失调量,与引入的失调量对比,证明了其正确性.在实际的装调过程中,用小型球面干涉仪分别收集3个视场的干涉图,得到失调光学系统的失调量,用Zemax软件验证失调量数据的正确性,从而指导装调.按此方法,在波长λ=632.8nm时,得到离轴三反射镜光学系统的全视场波像差RMS值为0.108λ.该方法也可以运用到其他光学系统中.  相似文献   

15.
误差分离技术在平面镜瑞奇-康芒法检测中的应用   总被引:3,自引:0,他引:3  
为了提高瑞奇-康芒法检测平面镜面形误差的精度,提出了利用检测系统光瞳面与被检平面镜表面的坐标映射关系插值拟合平面镜面形的方法。结合最小二乘法分析,解算了由光路调整引入的离焦误差,获得了更为真实的平面镜面形误差。理论仿真分析显示,此方法的平面镜测量误差可控制在λ/100(λ=632.8nm)量级。对口径为40mm的小口径平面镜进行了实际检测,检测过程中通过多角度旋转被测平面镜,利用坐标映射关系和幅值转换关系对测试波前进行恢复,在分离系统离焦误差后得到被检平面镜面形RMS值为0.018 6λ,与干涉仪直接检测得到的RMS值0.021λ相比,残差为0.002 4λ。实验结果证明了此种误差分离技术在瑞奇-康芒法对平面镜面形检测时的有效性与准确性。  相似文献   

16.
针对不同口径光学元件加工阶段的在线测量需求,提出了用于在线检测的紧凑型瞬态干涉测量系统。系统引入偏振相机来实现波前瞬态移相干涉测量以降低外界扰动影响。同时结合基于位形优化算法的子孔径拼接技术,可降低对运动扫描平台精度要求,并实现大口径光学元件全口径检测。为验证所提出测量系统的可行性,分别对金刚石车削机床对中工具和大口径球面镜进行在线检测和子孔径拼接测量,结果表明,与ZYGO干涉仪检测结果相比,两者对应的均方根值偏差的绝对值分别为0.003与0.007μm。同时该系统具有布局结构紧凑和对外界环境扰动不敏感的特点,可很好地满足复杂环境在线安装检测应用要求,在金刚石车削机床对中工具的在线调整和不同口径光学元件在线检测中具有较广泛的应用。  相似文献   

17.
正非球面光学元件表面形貌的干涉测量因须透过计算机全像片、零透镜等补偿元件提供与待测元件相匹配的理想非球面波前,故需严谨与复杂的程序进行测量系统即包含干涉仪内部光路系统对准误差、参考球面镜头与补偿元件等误差的校正。然而,测量结果亦包含镜片之夹持变形、承受重力的自重变形与测量环境的震动与气流扰动等信息,此类误差源对中大口径、测量光程长的光学元件的面形检测影响尤其大。近年,诸多文献探讨光学元件的绝对形状测量技术,透过多组态的测量架构  相似文献   

18.
大口径长焦距平行光管主反射镜支撑与调整机构的研究   总被引:9,自引:2,他引:7  
检验大口径长焦距光学系统,需要相应的大口径长焦距平行光管,而大口径长焦距平行光管的制造不同于短焦距平行光管的制造,环境因素及光学元件的固定方式对光管的成像质量有很大的影响.为了使光管有着较好的质量,光学镜面要有较好的面形及灵敏的调整机构.本文介绍主反射镜的支撑方式对镜面面形的影响及主反射镜的支撑和调整机构.  相似文献   

19.
全视场外差动态干涉仪在面形测量方面具有测量精度高、抗干扰能力强等优点,适合用于长焦距面形的动态干涉测量以及大口径光学元件的测量。但是干涉仪系统内部光学元件性能不理想以及元件装配存在误差等,会在干涉光路中引入频率混叠,影响干涉仪的测量精度。为了分析混频对全视场外差动态干涉仪测量精度的影响,从混频产生的原因出发,建立了由混频引入的测量误差的理论模型,分析了混频程度对测量精度的影响,分析结果表明,测量误差与混频程度呈非线性正相关,混频会造成测量面形结果上叠加一个和干涉条纹相同频率的周期性误差。搭建了全视场外差动态干涉测量实验系统,验证了不同混频程度对面形测量精度的影响,当混频程度为0.029时,面形测量误差为0.053λ;当混频程度为0.120时,面形测量误差为0.110λ,与仿真分析结果吻合。本文的研究对研制高精度全视场外差动态干涉仪具有实际意义。  相似文献   

20.
由于现有评价与测试方法不能满足3~4m地基光电探测系统在不同仰角下对光学系统波前检测的需求,本文提出了基于子孔径斜率离散采样,再重构全口径波面轮廓的波像差测试方法。采用光学模拟与数学分析协同仿真的方法,研究了波面重构算法的不确定度以及扫描运动引起的子孔径倾斜误差、子孔径扫描位置误差、像点坐标测量误差与波前复原精度间的作用规律。仿真结果显示,迭代算法的相对误差ΔPV为0.002 8λ(λ=632.8nm),模式算法的相对误差ΔPV为0.002 7λ。当子孔径倾斜误差小于0.2″,波面重构误差ΔPV约为0.02λ。当子孔径采样位置精度优于0.2mm,其引入的波面重构误差小于0.04nm(PV);当子孔径像点坐标提取精度优于5μm,波面重构误差ΔPV约为0.03λ。研究结果表明,当考虑波面重构过程中的实际测量误差时,模式算法的误差容限较高,收敛性更好。此外,构建实际测试装置时,需引入角度监测与算法误差补偿机制,子孔径倾斜角度监测系统的测角精度需优于0.2″。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号