首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文研究了激光加热工艺参数及钢的原始组织对AISI-01钢激光淬火层组织及硬度的影响。对各组样品表面淬硬层及心部组织的光学显微镜、电子显微镜、X射线衍射及显微硬度分析的结果表明,在激光功率400~600W、扫描速率0.02~0.42cm/s的范围内,可获得深度0.30~0.60mm、表面硬度60~68HRC的淬硬层。然而,激光功率与扫描速度的不同组合,将改变淬硬层表面残留奥氏体及未溶解碳化物的数量。以获得较均匀的淬硬层组织及较平缓的硬度-深度曲线考虑,样品的原始组织以调质处理至硬度30~40HRC为佳。  相似文献   

2.
45钢电子束扫描相变硬化组织和硬度的研究   总被引:4,自引:0,他引:4  
电子束表面处理可以提高钢铁材料的表面硬度和力学性能。研究电子束扫描对45钢硬化层组织和性能的影响,探讨电子束功率、扫描速度等工艺参数对硬化层组织和性能的影响。采用扫描电镜分析45钢电子束表面强化层的显微组织,用显微硬度计进行硬度测试。结果表明,45钢经电子束扫描处理后,硬化层的组织为针状和板条状马氏体,组织比常规调质处理更加均匀、细小,试样表面的平均硬度达58 HRC,比淬火加低温回火处理的硬度高3~5 HRC,是调质处理的两倍,从处理表面往下沿深度方向硬度逐渐减小。电子束工艺参数对硬化层组织和性能有较大影响,硬化层宽度和深度随着电子束功率的增加而增加,随着扫描速度的增加而减小;硬化层的最高硬度随着电子束功率密度的增加而增加,随着扫描速度的增加而减小。  相似文献   

3.
利用IPG光纤激光器YLR-3000激光加工系统,探究45#钢表面多道激光熔覆自熔性镍基碳化钨粉末最佳工艺参数。首先通过改变单因素变量,得出单道激光熔覆时最佳激光功率、送粉电压和扫描速度,进一步确定离焦量和搭接率的选取,最后进行激光熔覆梯度涂层实验。单道实验中最佳工艺参数为激光功率1200W、送粉电压7V、扫描速度2mm/s,离焦量3mm,表面洛氏硬度(HRC:60)是基体(HRC:22)的3倍;当Ni60A粉末作为底层材料时,平均洛氏硬度是基体(HRC:22)的2.5倍,熔覆层厚度均匀且熔池深度基本保持不变,第一道与最后一道熔覆层的高度差仅为0.10mm,当Fe基合金粉末作为底层材料时,高度差0.28mm;熔覆层组织晶粒的形状在扫描方向上呈现出逐渐增大,熔覆层底层与上层冶金结合很好,其组织晶粒过度连续;熔覆层上层显微硬度分布均匀,约是基体的3倍。激光熔覆梯度涂层材料且上层材料为自熔性镍基碳化钨粉末时,底层材料选择Ni60A粉末,得到的涂层成形质量更佳,最佳工艺参数为激光功率1200W、送粉电压7V、扫描速度2mm/s、离焦量3mm、搭接率25.47%。  相似文献   

4.
一、激光热处理原理 激光热处理是利用激光高能量密度的特点,在瞬时将金属表面加热到相变温度以上,并通过工件的快速冷却,达到工件表面的珠光体转变成马氏体,实现自淬火,淬火硬度可达HRC55—60。激光束功率越高,淬火深度越深(见图1)。激光束扫描速度越慢,淬火深度越深(见图2)。  相似文献   

5.
采用光纤激光加工设备在YG8硬质合金表面加工出沟槽织构,研究了激光加工参数对织构尺寸及形貌的影响,得到最佳激光加工参数;采用最佳激光加工参数在硬质合金表面加工出4种不同方向的正弦型沟槽织构,研究了干摩擦条件下织构的减摩特性。结果表明:随着激光功率、扫描次数的增加或扫描速度的减小,沟槽织构尺寸增大,但过高的激光功率或过多的扫描次数导致织构底部粗糙;最佳激光加工参数为激光功率40W,扫描速度100mm·s~(-1),扫描次数200次,此时沟槽织构表面形貌较好,织构宽度为160μm,深度为15μm;在试验载荷为2N、滑动速度为20mm·s~(-1)时,正弦中心线与摩擦方向成0°的正弦型沟槽织构的减摩效果优于正弦中心线与摩擦方向成30°,60°,90°的织构,且摩擦因数比光滑试样的降低了25%。  相似文献   

6.
本文利用超声频微锻造机构对45钢激光淬火层表面进行了微锻造处理。利用OM、SEM观察了微锻造对45钢激光淬火层表面组织的影响;利用显微硬度计与洛氏硬度计研究了微锻造后45钢激光淬火层表面显微硬度,硬化深度方向的显微硬度。结果表明:高频微锻造处理后,45钢激光淬火形成的明显而规则马氏体组织被锻碎,表面晶粒明显细化。表面显微硬度提高了11.4%,激光淬火强化区深度方向的显微硬度影响深度为0.2 mm,其中0.1 mm处硬度提高了10.0%,0.2 mm处提高了4.5%。  相似文献   

7.
我公司生产的大速比齿圈(见图1)的材料为20CrMnTi钢,技术要求为碳氮共渗处理:硬化层深度1.1~1.5mm,表面硬度58~64HRC,心部硬度29~45HRC,由于公司无淬火压床等淬火专用设备,且零件壁薄、直径大(337mm),  相似文献   

8.
激光淬火CrMoCu合金铸铁组织及摩擦学性能研究   总被引:1,自引:0,他引:1  
研究CrMoCu合金铸铁经激光淬火后淬硬层的微观组织结构特征,以及其显微硬度和减摩耐磨性能的变化。结果表明,CrMoCu合金铸铁激光淬火淬硬层依其组织特征可分为完全淬硬区和过渡区。硬化层深度为0.45~0.6mm,表面显微硬度较未淬火基体提高约140%;CrMoCu合金铸铁经激光相变硬化处理后,在不同载荷和低速下均具有较好的减摩性能;在试验范围内,CrMoCu合金铸铁经激光淬火后耐磨性能有显著提高。  相似文献   

9.
采用较大光斑的激光束对65Mn弹簧钢表面进行淬火。通过金相显微镜、显微硬度计等实验仪器研究65Mn弹簧钢在经过激光淬火后显微组织和显微硬度的变化。实验结果表明:经过激光淬火之后,65Mn弹簧钢表面出现一层显微硬化层,其显微组织主要有大量细小的针状马氏体和弥散的碳化物;硬化层深度约为300μm,硬化层硬度为772.5~978.5HV0.2,约为基体的4.2~5.4倍。  相似文献   

10.
大模数齿轮宽带激光淬火   总被引:2,自引:0,他引:2  
提出了激光热处理一个新的应用领域——采用宽带激光淬火对大模数齿轮进行表面强化处理,有效地防止齿面大块剥落的失效。试验在几种不同激光淬火工艺下进行,选取最佳工艺,并得出在其工艺处理下的性能及组织特征:硬化层深1.2~1.4mm,宽20mm,表面硬度HRC55~60,心部硬度HRC30~35、硬化层组织为细晶混合马氏体相少量残余奥氏体,心部为细回火索氏体。在整个硬化层中获得较高的残余压应力,其值在267~425MPa之间,并分析讨论了这些特性对防止大模数齿轮失效所起到的有效作用。  相似文献   

11.
为了得到TC4(Ti-6Al-4V)钛合金单道激光熔覆的最佳工艺参数组合,在TC4钛合金表面熔覆Ni60A粉末。采用IPG光纤激光器和同轴送粉系统进行激光熔覆实验,找出激光功率、送粉电压和扫描速度对熔覆层外观几何尺寸的影响规律以及对表面硬度、显微硬度和微观组织质量的影响,通过相互分析对比,找到一组最佳的工艺参数组合。当激光功率500W、送粉电压12V、扫描速度2mm/s时,得到的单道熔覆层外观形貌平整,表面硬度和显微硬度最高,并实现了良好的冶金结合。  相似文献   

12.
叶畅 《机电技术》2015,(1):40-41
对激光淬火Cr12模具钢进行了相变硬化处理,分析了搭接对硬化层硬度的影响,并进行金相分析及探伤,结果表明:在不同的激光相变硬化工艺下,可得到硬化层深度为0.23~0.43 mm的硬化层;激光淬火得到硬化层硬度由表及里呈现一个逐渐过渡的硬化曲线,硬化层最高685 HV,平均硬度为596 HV。采用由圆弧到上表面的搭接次序及20%的搭接量可满足实际使用要求。硬化层组织为高细化的马氏体。激光淬火处理后无变形、无裂痕,且工艺简单,便于推广。  相似文献   

13.
通过铣削试验分别研究了主轴转速(300,500,650,800,1 200 r·min-1)、铣削进给量(0.030,0.045,0.060,0.075,0.090 mm·r-1)和单道次铣削深度(0.20,0.35,0.50,0.65,0.80 mm)对FGH4113A镍基高温合金加工表面完整性的影响。结果表明:随着铣削进给量或单道次铣削深度的增大,加工表面的缺陷增多,表面粗糙度和硬度增大,表面残余应力逐渐由压应力转变成拉应力;随着主轴转速的增大,加工表面缺陷减少,表面粗糙度和硬度降低,残余压应力减小。在铣削速度超过800 r·min-1、单道次铣削深度小于0.35 mm、进给量控制在0.045 mm·r-1以下条件下,加工表面质量较好,表面粗糙度Ra在0.40μm左右,残余应力为压应力,且无明显硬化层。  相似文献   

14.
采用激光选区熔化(SLM)技术制备TA32钛合金试样,研究了激光功率(200~400 W)、扫描速度(800~1 200 mm·s-1)和扫描间距(90~130μm)对成形质量及硬度的影响。结果表明:随着扫描速度增加,SLM成形TA32钛合金的表面粗糙度先减小后增大,相对密度和维氏硬度均逐渐降低;随着扫描间距增大,钛合金的表面粗糙度先减小后增大,相对密度和维氏硬度均先降低后升高;随着激光功率增加,钛合金的表面粗糙度先减小后增大,相对密度和维氏硬度均先升高后降低;适用于TA32钛合金SLM成形的激光能量密度范围为45~75 J·mm-3。  相似文献   

15.
采用纳秒激光加工技术在纯铝板表面制备微纳米结构,之后进行150℃×2h的热处理,研究激光扫描间距(0.0050.020mm)、扫描速度(1001 700mm·s~(-1))与热处理对激光烧蚀表面润湿性的影响。结果表明:不同工艺参数下激光烧蚀后纯铝板表面均形成了相对规则的微纳米网格结构;激光烧蚀后的纯铝板表面为超亲水表面,再经热处理后变为疏水表面或超疏水表面;随着扫描速度和扫描间距的增大,激光烧蚀和热处理后,纯铝板表面的接触角变化不明显,滑动角增大,表现出不同程度的润湿性;在激光扫描速度为100mm·s~(-1),扫描间距为0.005mm下激光烧蚀与热处理后,纯铝板表面微纳米结构致密,其接触角为155.6°,滑动角为4°,超疏水性最佳。  相似文献   

16.
522-181襟冀蜗杆(图1)是三叉戟上精度很高的重要传动零件,用18Cr2Ni4WA钢制造。要求渗碳层深度1.0~1.4mm,蜗杆外表面硬度HRC58~62,心部硬度HRC36~40,全长弯曲度<0.10mm。该蜗杆在粗加工后,进行调质处理,硬度为HRC22~25,经半精加工后渗碳淬火。在热处理后,全长弯曲度达1~3mm,并且在整个长度方向上收缩约1mm。由于该零件细长,热处理校正非常困难,且极易断裂。此外,在热处理后  相似文献   

17.
本文利用Laserline LDF4000-100型激光器在40Cr钢板上制备8620合金涂层,以熔覆层截面形貌质量作为指标,优化工艺参数,并研究了工艺参数对显微硬度的影响。结果表明,当采用激光功率2500W、扫描速度650mm/min、送粉率8%作为工艺参数进行单道熔覆时,可以获得结合强度较高、表面成型良好的熔覆层;当采用激光功率2500W、扫描速度650mm/min、送粉率8%、搭接率60%作为工艺参数进行多道熔覆时,可以获得焊道熔深合适、熔合良好的熔覆层。在一定参数范围内,激光功率增加可以导致熔覆层显微硬度下降,而扫描速度和送粉率增加则可以增加熔覆层显微硬度。  相似文献   

18.
在30CrMnSi表面进行了Ni-25粉末的激光熔覆试验。在保持保护气体流量不变的情况下,通过改变激光的功率和扫描速度,进行不同工艺条件下的单道激光熔覆试验。试验表明,当激光功率为1 500W,扫描速度为7mm/s时,熔覆层金相组织细小且无裂纹。  相似文献   

19.
激光淬火作为一种适用于精密齿条的热处理技术,具有表面硬度高、硬化层分布均匀、变形极小等优良的加工效果。针对次摆线齿条的齿面激光淬火过程,采用有限元仿真对激光淬火过程中的温度场进行分析。首先建立了沿次摆线齿条齿面轴向扫描的激光淬火模型,从而得到齿面热流密度分布;其次运用ANSYS有限元软件计算得到淬火过程中温度分布情况;最后将不同的齿面位置及激光参数的淬火温度场仿真结果进行对比。研究结果表明:次摆线齿条齿面的淬火温度、冷却速度、淬火深度等均满足淬火要求;激光入射角对淬火温度影响较小;激光功率和扫描速度对淬火温度影响效果相反,其中激光功率的影响起主导作用。  相似文献   

20.
利用立式感应淬火机在特定频率和功率下对40Cr15Mo2VN钢进行感应淬火,研究加热时间对40Cr15Mo2VN钢的表面硬度、淬硬层深度和组织特征的影响,结果表明:40Cr15Mo2VN钢在频率12.3 kHz,功率57 kW,水剂冷却条件下进行感应淬火是可行的;加热7,8 s时试样表面硬度不小于58 HRC,淬硬层深度分别为4.2,4.7 mm,表面组织为回火马氏体,心部组织为回火索氏体;加热9~11 s时试样表面硬度均不大于58 HRC,加热9,10 s时表面出现过热组织,加热11 s时表面出现过烧组织。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号