首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Plastic injection molding is discontinuous and a complicated process involving the interaction of several variables for control the quality of the molded parts. The goal of this research was to investigate the optimal parameter selection, the significant parameters, and the effect of the injection‐molding parameters during the post‐filling stage (packing pressure, packing time, mold temperature, and cooling time) with respect to in‐cavity residual stresses, volumetric shrinkage and warpage properties. The PP + 60 wt% wood material is not suitable for molded thin‐walled parts. In contrast, the PP + 50 wt% material was found to be the preferred type of lignocellulosic polymer composite for molded thin‐walled parts. The results showed the lower residual stresses approximately at 20.10 MPa and have minimum overpacking in the ranges of ?0.709% to ?0.174% with the volumetric shrinkage spread better over the part surface. The research found that the packing pressure and mold temperature are important parameters for the reduction of residual stresses and volumetric shrinkage, while for the reduction of warpage, the important processing parameters are the packing pressure, packing time, and cooling time for molded thin‐walled parts that are fabricated using lignocellulosic polymer composites. POLYM. ENG. SCI., 55:1082–1095, 2015. © 2014 Society of Plastics Engineers  相似文献   

2.
Decades ago, the production of packaging with the injection in‐mold labeling (IML) has been established. With this manufacturing technique, label and packaging, both are of the same polymeric material, become inseparably connected during the injection molding process. Because thermal conductivity of the polymeric label material is clearly smaller than that of the metal mold wall, thermal‐induced warpage of injected IML parts or part surface deformation could occur. In this study, structure and warpage behavior of IML parts, which are different from those of conventional molded parts without labels were intensively investigated. It was found that it is the volume contraction difference between label and substrate that forces IML parts to warp to the opposite side of the label. In addition, IML part warpage problem can be coped by varying the mold temperature on the stationary and moving mold platen. By increasing the mold temperature on the label side, the degree of IML part warpage can be reduced with acceptable reduction in mechanical properties. The optimum mold temperature range for particular substrate material, however, was found to be more decisive in maintaining the modulus of elasticity of IML parts than the magnitude of mold temperature difference. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

3.
The dimensional stability of ethylene copolymers in rotational molding was studied by comparing the warpage observed for a series of conventional and single‐site catalyzed ethylene copolymers. Bench‐scale molding trials were carried out under controlled molding conditions. The rapid cooling of the mold using a water spray resulted in greater warpage. Under such conditions, molded parts made using the single‐site resins showed less warpage compared to the Ziegler‐catalyzed copolymers with otherwise comparable densities. The Ziegler‐catalyzed copolymers were characterized by a faster crystallization rate, and were shown to generate larger crystallinity gradients through the part thickness during the cooling process. Second to temperature gradients, crystallinity gradients are a leading cause for the development of residual stresses and causing warpage. Differences in the crystallization rates between single‐site and Ziegler‐catalyzed copolymers are discussed based on their intermolecular comonomer distributions. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

4.
5.
To illustrate the potential effect of unbalanced cooling on warpage of flat parts, a simplified two-part analysis is presented. First a computational model for amorphous polymers cooling in an injection molding cavity is presented. The simulation is a finite difference solution of the one-dimensional, transient heat conduction equation with constant material properties. Plastic and mold temperature profiles are calculated through the cooling cycle and the transients from cycle to cycle are included. Temperatures are predicted for both sides of the mold allowing asymmetrical cooling to be analyzed. The model is verified analytically and is in agreement with published data. Secondly, a simplified method of predicting the thermal warpage of a fiat part from calculated temperature profiles is discussed and illustrated. The relative effects on calculated part warpage of asymmetric mold geometry and cooling fluid temperature are predicted with this analysis method. The sensitivity of warpage to these design factors is illustrated for an example part.  相似文献   

6.
本文以注射成型照相机前壳为研究对象,以注塑成型中的翘曲量为优化目标,利用正交试验结合CAE模拟技术,研究模具温度、熔体温度、注射时间、保压时间、保压压力和冷却时间对制品翘曲的影响规律。用均值分析法得到最小翘曲变形的一组优化工艺参数组合,并进行CAE模拟验证。再运用方差分析确定各个工艺参数对翘曲变形的影响程度。  相似文献   

7.
王辉  孙寿云  邓云祥 《塑料制造》2011,(10):49-51,55
本文以注射成型照相机前壳为研究对象,以注塑成型中的翘曲量为优化目标,利用正交试验结合CAE模拟技术,研究模具温度、熔体温度、注射时间、保压时间、保压压力和冷却时间对制品翘曲的影响规律。用均值分析法得到最小翘曲变形的一组优化工艺参数组合,并进行CAE模拟验证。再运用方差分析确定各个工艺参数对翘曲变形的影响程度。  相似文献   

8.
Internal stresses in injection molded components, a principal cause of shrinkage and warpage, are predicted using a three‐dimensional numerical simulation of the residual stress development in moldings of polystyrene and high‐density polyethylene. These residual stresses are mainly frozen‐in thermal stresses due to inhomogeneous cooling, when surface layers stiffen sooner than the core region as in free quenching. Additional factors in injection molding are the effects of melt pressure history and mechanical restraints of the mold. Transient temperature and pressure fields from simulation of the injection molding cycle are used for calculating the developing normal stress distributions. Theoretical predictions are compared with measurements performed on injection molded flat plates using the layer removal method on rectangular specimens. The thermal stress development in the thinwalled moldings is analyzed using models that assume linear thermo‐elastic and linear thermo‐viscoelastic compressible behavior of the polymeric materials. Polymer crystallization effects on stresses are examined. Stresses are obtained implicitly using displacement formulations, and the governing equations are solved numerically using a finite element method. Results show that residual stress behavior can be represented reasonably well for both the amorphous and the semicrystalline polymer. Similarities in behavior between theory and experiment indicate that both material models provide satisfactory results, but the best predictions of large stresses developed at the wall surface are obtained with the thermo‐viscoelastic analysis.  相似文献   

9.
The solidification of a molten layer of amorphous thermoplastic between cooled parallel plates is used to model the mechanics of part warpage in the injection-molding process. Flow effects are neglected, and a thermorheologically simple thermoviscoelastic material model is assumed. The model allows material to be added to fill the space created by the pressure applied during solidification so that this model can be used to assess packing-pressure effects in injection molding. Parametric results are presented on the effects of the mold temperatures and the packing pressure—the pressure applied during solidification to counteract the effects of volumetric shrinkage of the thermoplastic—on the in-plane and through-thickness shrinkages, on warpage, and on residual stresses in plaque-like geometries. The packing pressure is shown to have a significant effect on part warpage. While the results are presented in terms of normalized variables based on the properties of bisphenol-A polycarbonate, they can be interpreted for other amorphous thermoplastics, such as modified polyphenylene oxide, polyetherimide, and acrylonitrile-butadiene-styrene.  相似文献   

10.
The main cause of warpage in injection moldings is the imbalance of the thermal residual stresses that are caused by a non-uniform temperature distribution through the thickness of the moldings resulting from variation in cross sections, part geometries, and temperature difference between the mold surfaces. As the hot plastic melt is injected into the relatively cooler mold, a temperature gradient develops between the core of the molding and its surfaces, determining the magnitude of the residual stresses and warpage deflection. The relationship between the temperature difference of the two halves of the mold and warpage for a flat plate was measured and predicted by use of a finite element software package. The development of warpage in a 3D component (L-shaped bracket) was also measured, and the results were compared with computer predictions.  相似文献   

11.
The solidification of a molten layer of amorphous thermoplastic between cooled parallel plates is used to model the mechanics of part shrinkage and warpage and the buildup of residual stresses in the injection molding process. Flow effects are neglected, and a thermorheologically simple thermoviscoelastic material model is assumed. The equilibrium thermomechanical properties of the material and the shift function can be temperature- and pressure-dependent. The model allows material to be added to fill the space created by the packing pressure applied during solidification; therefore, this model can be used to assess packing-pressure effects in injection molding. The model also accounts for freeze-off effects in which the cavity pressure is controlled by the solidification process and must therefore be determined as a part of the solution.  相似文献   

12.
In rotational molding, polymer powders are subjected to heating, melting, cooling, and subsequent crystallization processes. Because of the asymmetrical cooling condition, thermally induced residual stresses are created inside molded parts leading to part warpage. A detailed theoretical heat transfer model is presented for the entire rotational molding process including the consideration of endothermic and exothermic transitions. At the same time, the development of residual stress inside the molded parts is simulated with thermoelastic model. The warpage values are calculated under different processing cases, and the generated numerical results are in good agreement with data reported in the literature. Our results show that both crystallinity and temperature gradients developing within the polymer during the cooling process greatly affect the dimensional stability of ethylene copolymers typically processed in rotational molding. The latter is found to be the determining factor in evaluating the effect of cooling conditions on the warpage generated in a molded product. Our results also demonstrate the importance of the crystallization kinetics, the material stiffness, and its evolution during the solidification process on the dimensional stability of the molded products. POLYM. ENG. SCI., 2008. © 2007 Society of Plastics Engineers  相似文献   

13.
周国发  贺永媛 《中国塑料》2007,21(10):61-65
采用Moldflow软件,通过微孔注射成型过程的数值模拟,系统研究了熔体注射温度、模具温度对其体积收缩、翘曲变形和残余应力的影响规律,并基于流变学理论,揭示了其影响机理。研究结果表明,随着熔体注射温度和模具温度增加,微孔注射制品翘曲变形和残余应力均增加,成型制品的体积收缩随着熔体注射温度升高而增加,而随着模具温度升高而减小。本研究为微孔注射成型工艺和模具的设计提供理论指导。  相似文献   

14.
Complex automotive parts were produced by film insert molding and the ejected parts were annealed to investigate the viscoelastic deformation. Warpage of the part was predicted by numerical simulation of mold filling, packing, and cooling stages with non‐isothermal three‐dimensional flow analysis. The flow analysis results were transported to a finite element stress analysis program and the stress analysis was performed by using time‐temperature superposition principle to investigate viscoelastic deformation. Predicted residual stresses, viscoelastic deformation, and warpage showed good agreement with experimental results. Thermal shrinkage of the inserted film and relaxation of the residual stress affected the viscoelastic deformation of the part significantly during annealing. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
汽车内饰件可由注塑加工获得,但成型过程中塑件产生的翘曲、体积收缩较大,针对该问题,以某汽车薄壁注塑件为例,研究了其注塑工艺参数的优化方法.通过以注塑过程中的最小翘曲和最小体积收缩率为目标函数,以注塑温度、模具温度、注射压力、保压压力、保压时间以及冷却时间等参数作为设计变量,构建了多目标全局优化模型.利用Moldflow...  相似文献   

16.
以汽车CD托架注塑成型为例,结合生产实际问题,构建了产品CAE分析模型,运用Moldfl ow2015软件对产品材料推荐的注塑成型工艺参数进行了初步仿真,对注塑过程中的翘曲、熔接痕、气穴等缺陷成因进行了分析,并给出了质量改善优化目标,提出了一种结合Taguchi试验法、BP神经网络预测的注塑成型工艺寻优方法,并对寻优结果进行了CAE模流分析验证。结果表明,神经网络预测结果与CAE模流分析结果相近,产品翘曲量降低至1.192 mm,产品较佳的注塑成型工艺参数为:料温为225℃,模温为60℃,注塑压力为70 MPa,注塑时间为1.3 s,第一保压压力为80 MPa,第一保压时间为12 s,第二保压压力为30 MPa,第二保压时间为3 s,冷却时间为15 s,型腔随形水路C1,C2冷却水的温度均为30℃。提出的优化设计方法能有效降低模具试模成本,缩短模具生产周期。  相似文献   

17.
为了优化注塑成型工艺,研究了注塑成型的数学模型,以及产生翘曲形变的原因,在此基础上利用Moldflow软件对薄壁件塑料注塑成型过程中的宽浇口平板进行了仿真实验,并采用了无定型塑料丙烯腈-丁二烯-苯乙烯共聚物+聚碳酸酯(ABS+PC)对其进行注射、保压、冷却等流程模拟,选定了保压压力、熔体温度、冷却时间、模具温度、注射时间、保压时间等主要工艺参数,并通过方差比较的方法对这些工艺参数进行了评价,最终确定了注塑成型的优化方案。通过实验得出了ABS+PC的最优工艺参数组合,有效降低薄壳制件的翘曲量并优化了其制品性能。  相似文献   

18.
Thermally induced stress and the relevant warpage caused by inappropriate mold design and processing conditions are problems that confound the overall success of injection molding. A visco-elastic phase transformation model, using a standard linear solid for the solidified polymer and a viscous fluid model for the polymer melt, of 2-D finite element scheme with 8 noded overlay isoparametric elements was used to simulate and predict the residual stress and warpage within injection molded articles as induced during the cooling stage of the injection molding cycle. Computed results are in good agreement with published experimental data. The approach proposed here is to examine and simulate the injection molding solidification process with the intent of understanding and resolving more inclusive and realistic problems.  相似文献   

19.
The present study focused on the optimization of the injection molding process parameters to minimize thermal residual stresses in the surface regions of the polystyrene and high density polyethylene parts. Process parameters such as melt temperature, mold temperature and cooling time were considered as variables and their effects on residual stresses in surface regions of the parts were investigated by utilizing design of experiment (DOE), Taguchi and analysis of variance (ANOVA) methods. As a result, the most important parameters for residual stresses in surface regions of the PS and HDPE parts were found melt temperature and mold temperature, respectively.  相似文献   

20.
采用正交试验和Moldflow数值模拟相结合的方法,对汽车A柱下饰板的注射成型过程进行了分析,研究了模具温度、熔体温度、注射时间和保压压力等工艺参数对残余应力和翘曲变形的影响。通过极差分析得到,熔体温度对翘曲变形影响最大,保压压力对残余应力影响最大,最佳工艺参数组合为模具温度40 ℃,熔体温度205 ℃,注射时间5 s,保压压力45 MPa;通过仿真分析与实际成型方案进行比较,汽车A柱下饰板的翘曲变形由3.847 mm降为3.121 mm,残余应力由66.95 MPa降为65.21 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号