首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of inorganic and organic supporting electrolytes on the electrochemical, optical, and conducting properties of poly(o‐anisidine), poly(o‐toluidine), and poly(o‐anisidine‐coo‐toluidine) thin films was investigated. Homopolymer and copolymer thin films were synthesized electrochemically, under cyclic voltammetry conditions, in aqueous solutions of inorganic acids (H2SO4, HCl, HNO3, H3PO4, and HClO4) and organic acids (benzoic acid, cinnamic acid, oxalic acid, malonic acid, succinic acid, and adipic acid) at room temperature. The films were characterized by cyclic voltammetry, ultraviolet–visible spectroscopy, and conductivity measurements with a four‐probe technique. The ultraviolet–visible spectra were obtained ex situ in dimethyl sulfoxide. The optical absorption spectra indicated that the formation of the conducting emeraldine salt (ES) phase took place in all the inorganic electrolytes used, whereas in organic acid supporting electrolytes, ES formed only with oxalic acid. Moreover, the current density and conductivity of the thin films was greatly affected by the nature and size of the anion present in the electrolyte. For the copolymer, the conductivity lay between the conductivity of the homopolymers, regardless of the supporting electrolyte used. The formation of the copolymer was also confirmed with differential scanning colorimetry. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2634–2642, 2003  相似文献   

2.
《国际聚合物材料杂志》2012,61(12):1087-1105
ABSTRACT

An attempt has been made to prepare poly(o-anisidine) (POA), poly(o-toluidine) (POT) and copolymer poly(o-anisidine)-co-poly(o-toluidine) (POA-co-POT) thin films dopped by several inorganic salts (sulphates and chlorides) with varying size of cations using aqueous solution of H2SO4 as electrolyte. The effect of dopant in the presence of electrolyte is rarely studied in the field of conducting polymers. Various inorganic salts as dopants, namely, K2SO4, Na2SO4, Li2SO4, MgSO4, KCl, NaCl, LiCl, and MgCl2 are used at room temperature. The films were electropolymerized in solution containing 0.1 M monomer(s), 1 M H2SO4 as electrolyte and 1 M inorganic salt, by applying sequential linear potential scan rate 50 mV/sbetween ? 0.2 to 1.0 V versus Ag/AgCl electrode. The electro-synthesized films were characterized by cyclic voltammetry, UV-visible spectroscopy, and conductivity measurements. It was observed that the UV-visible peaks usually appearing at about 802–826 nm with a shoulder at 410–426 nm shows a shift in presence of doping salt for emeraldine salt (ES) phase of POA, POT, POA-co-POT. In overall study, a significant increase in conductivity is observed for all mentioned dopants and among these K2SO4 is found to be the best in sulphate category and KCl in chloride category. The formation of copolymer has been confirmed by differential scanning calorimetry.  相似文献   

3.
The study and application of thin film technology is entirely entered in to almost all the branches of science and technology. Transparent conducting oxide films have been widely used in the fields of flat panel displays, solar cells, touch panels and other optoelectronic devices owing to their high electrical conductivity and optical transmittance in visible region. In the present study, Solid state ion conducting polymer electrolyte films were prepared by doping nano-sized TiO2 particles on PVP (poly vinyl pyrrolidone) complexed with MgSO4·7H2O salt by solution casting technique and characterized by powder XRD, DSC, SEM, optical and dielectric studies. The XRD pattern of the prepared sample shows the semi-crystalline nature. SEM and EDS confirms the presence of compounds inside the material. Optical absorption studies are used to measure the bandgap of the prepared sample. Dielectric studies are performed to observe the conductivity of the sample.  相似文献   

4.
A conducting composite of polyaniline, poly(o-anisidine), and poly(aniline-co-o-anisidine) using incorporation of TiO2 and SiO2 was prepared by electrochemical polymerization. The films were electropolymerized in a solution containing 0.1 M monomer(s), 1 M sulfuric acid as supporting electrolyte, and 10?5 M TiO2 and SiO2 by applying a sequential linear potential scan rate of 50 mV/s between ? 0.2 and 1.0 V versus an Ag/AgCl electrode. The composites were characterized by cyclic voltametry, UV-visible spectroscopy, electrical conductivity, and thermogravimetric analysis. It was observed that the UV-visible peaks appeared in the region of the conducting emerladine salt phase. In an overall study, the polymers prepared using TiO2 had a higher conductivity than those prepared with SiO2; however, higher conductivity was observed for the polyaniline-TiO2 conducting composite than for the other polymers. The composites did not lose their color at higher temperature and hence can be utilized as the conductive pigments required for antielectrostatic applications.  相似文献   

5.
Mobile counter anion exchange of electropolymerized polyaniline (PANI) films with the anions in acid solutions has been investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy, Raman, UV-vis, and fluorescence spectra. The studied acids include camphorsulfonic acid, p-toluene sulfonic acid, HCl, HClO4, H2SO4 and H3PO4. In two cases of small and large counter ions of PANI films, CV tests have been performed alternately three times in each of two electrolytes containing organic or inorganic acid. The investigation of electrochemical and spectrophotometric measurements reveals that large counter anions can be easily replaced by the small anions; and the reverse exchange also occurs, but shows very low efficiency. This indicates that the achieved anion exchange in both cases leads to the remarkable alteration in electrochemical behavior and electrical conductance of PANI films. This implies counter anions, whatever the original or redoping ones, play an important role in the electrical, electrochemical, even optical properties of PANI. However, the polymer morphology does not be changed after exchange tests. This allows us to point out a ‘morphology-memory’ effect which is very significant for the development and application of PANI films with the same morphology and different properties.  相似文献   

6.
Poly(2‐iodoaniline) (PIANI) and poly(aniline‐co‐2‐iodoaniline) [P(An‐co‐2‐IAn)] were synthesized by electrochemical methods in acetonitrile solution containing tetrabutylammonium perchlorate (TBAP) and perchloric acid (HClO4). The voltametry of the copolymer shows characteristics similar to those of conventional polyaniline (PANI), and it exhibits higher dry electrical conductivity than PIANI and lower than PANI. The observed decrease in the conductivity of the copolymer relative to PANI is attributed to the incorporation of the iodine moieties into the PANI chain. The structure and properties of these conducting films were characterized by FTIR and UV‐Vis spectroscopy and by an electrochemical method (cyclic voltametry). Conductivity values, FTIR and UV‐Vis spectra of the PIANI and copolymer were compared with those of PANI and the relative solubility of the PIANI and the copolymer powders was determined in various organic solvents. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1652–1658, 2003  相似文献   

7.
Comb-shaped graft polymers were synthesized and complexed with a LiCF3SO3 salt to form a new class of polymer electrolytes. The polymers based on an acrylonitrile-butadiene copolymer (NBR) have pendant, short-chain poly(ethylene oxide) (PEO) grafted onto a butadiene unit. The characteristics of these polymer electrolytes were investigated in terms of number of pendant EO groups and grafting degree in the graft copolymer. The maximum conductivity was observed at the optimum side PEO chain length, and the PEO chain length for the maximum conductivity decreased with an increase in the grafting degree. And a solid 7Li NMR relaxation technique was used to study the local environments and dynamics of the ions in the polymer electrolytes. The maximum conductivity value obtained from our study was three orders of magnitude higher than that of classical PEO-based electrolytes at ambient temperature. These improved low temperature conducting polymers with higher relative mechanical strength are expected to be suitable for practical applications, such as in rechargeable lithium batteries or electrochromic devices.  相似文献   

8.
Conductive polyaniline was synthesized in aqueous 1.0M oxalic acid containing 0.1 M aniline by electrochemical and chemical oxidation and characterized by conductivity, solubility, ultraviolet and infrared spectroscopy, and cyclic voltammetry. The solubility experiments showed that the solubility of oxalic acid-doped polyaniline in dimethylsulfoxide and dimethylformaide increased to a certain extent. The soluble part of the polyaniline was free from impurities such as quinones. Cyclic voltammetric studies in oxalic acid medium revealed that aniline exhibited a similar behaviour to that in H2SO4 and the polymerization rate was much slower than that in H2SO4.  相似文献   

9.
Tungsten trioxide (WO3) thin films were prepared incorporating various organic acid additives by the sol-gel spin coating technique. They were characterized by X-ray diffraction (XRD), UV-Visible analysis, scanning electron microscopy (SEM) and dc electrical conductivity. From XRD, the crystal phase, average grain size and structural parameters of WO3 thin films were found to vary owing to different water dissolved organic acid additives. The variation of optical conductivity and band gap energy was calculated from the UV-Visible analysis. The SEM studies revealed that the organic acids influenced the surface morphology of the microsized plates of tungsten oxides. The electrical conductivity at various temperatures correlated with the average grain size of the nanocrystallites of WO3 thin films.  相似文献   

10.
Thin boron-doped diamond films have been prepared by HF CVD (hot filament chemical vapour deposition technique) on conductive p-Si substrate (Si/Diamond). The morphology of these Si/diamond electrodes has been investigated by SEM and Raman spectroscopy. The electrochemical behaviour of the Si/diamond electrodes in 1 M H2SO4 and in 1 M H2SO4 + carboxylic acids has been investigated by cyclic voltammetry. Finally, the electrochemical oxidation of some simple carboxylic acids (acetic, formic, oxalic) has been investigated by bulk electrolysis. These acids can be oxidized at Si/diamond anodes to CO2, in the potential region of water and/or the supporting electrolyte decomposition, with high current efficiency.  相似文献   

11.
Strong blue colouration has been induced in rf sputtered thin films of WO3 by electrochemical injection of H+, Li+, and Ag+ ions from various solid and liquid electrolytes. Electrical conductivity and optical properties of the coloured films are reported. Comparison of these properties with those of single crystal tungsten bronzes of equivalent composition is made. Evidence, electrical and optical, for a non-uniform distribution of injected ions produced by relatively fast diffusion down grain boundaries in these polycrystalline WO3 films is presented. A model for the optical absorption consisting of two components, due to (i) conduction electron intra-band transitions (in states close to crystalline surfaces) and (ii) transitions from unionized donor states to the conduction band (in the grain boundary phase), is tentatively proposed.  相似文献   

12.
Poly(pyrrole-co-N-methyl pyrrole) copolymer and poly(pyrrole)/poly(N-methyl pyrrole) bilayer composites were electrochemically synthesized on copper by cyclic voltammetry from aqueous solution of 0.3 M oxalic acid and 0.1 M monomer. Synthesis of copolymers were performed with different monomer feed ratios (pyrrole:N-methyl pyrrole, 8:2, 6:4, 5:5, 4:6 and 2:8) and in order to determine the copolymer, which has the best corrosion performance, anodic polarization was applied to copolymer coated samples. It was found that the performance of coatings was strongly dependent to the monomer feed ratio and the copolymer synthesized with 8:2 concentration ratio showed the most protective property compared to others. Bilayer of poly(pyrrole)/poly(N-methyl pyrrole) was also synthesized to compare the anticorrosive properties. Polymer films were characterized by ATR-FTIR spectroscopy and SEM techniques. Corrosion behavior of polymer composites was investigated in 0.1 M H2SO4 solution by anodic polarization and electrochemical impedance spectroscopy. Different approaches such as phase angle at high frequency and areas under Bode plots were used to evaluate corrosion performances of the coatings. Copolymer and bilayer coatings were found to have higher protection effect than single polypyrrole coatings. Moreover, bilayer coating exhibited better protection efficiency than copolymer coating against corrosion of copper when the obtained results were compared.  相似文献   

13.
Copolymerization of o-anisidine and o-anisidine was achieved electrochemically in aqueous solution containing H2SO4 as supporting electrolyte. The copolymer compositions can be altered by varying the monomer feed ratios during electrosynthesis. The films were electropolymerized in solution containing monomers in various ratio (0.025–0.1 M) and 1 M sulphuric acid as electrolyte by applying sequential linear potential scan rate 50 mV/s between ? 0.2 to 1.0 V. versus Ag/AgCl electrode. The copolymers were characterized by cyclic voltammetric, conductivity measurement, UV-Visible spectroscopy, FT-IR spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and CHN elemental analysis.  相似文献   

14.
There has been increasing interest on various properties and applications of electronically conducting polymers. Polyethylenedioxythiophene (PEDOT) is an interesting polymer of this type as it exhibits very high ionic conductivity. In the present study, PEDOT has been electrochemically deposited on stainless steel (SS) substrate for supercapacitor studies. PEDOT/SS electrodes prepared in 0.1M H2SO4 in presence of a surfactant, sodium dodecylsulphate (SDS), have been found to yield higher specific capacitance (SC) than the electrodes prepared from neutral aqueous electrolyte. The effects of concentration of H2SO4, concentration of SDS, potential of deposition, and nature of supporting electrolytes used for capacitor studies on SC of the PEDOT/SS electrodes have been studied. SC values as high as 250 F/g in 1M oxalic acid have been obtained during the initial stages of cycling. However, there is a rapid decrease in SC on repeated charge‐discharge cycling. Spectroscopic data reflect structural changes in PEDOT on extended cycling. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

15.
A novel copolymer of polybenzimidazoles was prepared by copolymerization of 3,3′‐diaminobenzidine tetrahydrochloride, 3,4‐diaminobenzoic acid and isophthalic acid in polyphosphoric acid at 200 °C. The polymerization could be performed within 90–110 min with the assistance of microwave irradiation. The solubility of the copolymer obtained in N,N‐dimethylacetamide (DMAc) was improved compared with those of poly[2,2′‐(m‐phenylene)‐5,5′‐bibenzimidazole] and poly(2,5‐benzimidazole). Thus copolymer membranes could be readily prepared by dissolving the copolymer powders in DMAc with refluxing under ambient pressure. The decomposition temperature of the copolymer was about 520 °C in air according to thermogravimetric analysis data. The proton conductivity and mechanical strength of the phosphoric acid‐doped copolymer membranes were investigated at elevated temperatures. A conductivity of 0.09 S cm?1 at 180 °C and a tensile stress at break of 5.9 MPa at 120 °C were achieved for the acid‐doped copolymer membranes by doping acids in a 75 wt% H3PO4 solution. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
Sodium ion conducting thin film polymer electrolytes based on poly(ethylene oxide) (PEO) complexed with NaClO3 were prepared by a solution‐casting method. Characterization by XRD, IR spectroscopy and AC conductivity has been carried out on these thin film electrolytes to analyse their properties. The conductivity studies show that the conductivity value of PEO:NaClO3 complex increases with the increase in salt concentrations. Increase in conductivity was found in the electrolyte system by the addition of low molecular weight polymer poly(ethylene glycol) (PEG) and the organic solvents dimethylformamide (DMF) and propylene carbonate (PC). Using these electrolyte systems, cell parameters were measured from the discharge study with the application of load 100 kΩ at room temperature with common cell configuration Na|electrolyte|C:I2:electrolyte. The open circuit voltage (OCV) ranges from 2.81 to 3.23 V and the short circuit current (SCC) ranges from 340 to 1180 µA. © 2001 Society of Chemical Industry  相似文献   

17.
A series of novel electrolytes based on the terpolymer host, poly(epichlorohydrin-co-ethylene oxide-co-allyl glycidyl ether) with lithium perchlorate and lithium bis(trifluoromethanesulfonyl)imide have been prepared and characterized by conductivity measurements, cyclic voltammetry at a gold microelectrode and thermal analysis.Electrolyte compositions, represented as p(EEO-AGE)LiX(wt%), were produced with lithium salt compositions between 0.5 and 53 wt% (where wt% indicates amount of lithium salt present in the epichlorohydrin-co-ethylene oxide-co-allyl glycidyl host matrix). The guest salt and host polymer were dissolved in tetrahydrofuran and cast to produce thin, free-standing electrolyte films.The p(EEO-AGE)LiX(wt%) (X = ClO4 and TFSI) electrolytes showed encouraging levels of ionic conductivity and acceptable thermal stability. Electrolytes based on this host polymer were obtained as completely amorphous films with good mechanical properties.  相似文献   

18.
Organic thermoelectric materials based on conducting polymers, especially for polyaniline (PANi) and poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), have attracted great concern due to their tunable electron transport properties by controlling doping level. Here, the solvent effects of deionized H2O and NH3·H2O were investigated on the electrical conductivity and Seebeck coefficient of PANi/PEDOT/PSS composite films. The introduction of PEDOT/PSS can not only effectively improve the quality of pure PANi film, but also enhance the electrical conductivity of PANi film. The different volumes of deionized H2O as dilution have a great influence on the electrical conductivity of PANi/PEDOT/PSS composite thin film with a maximum electrical conductivity value of 63.5 S cm?1, which is much higher than pure PANi and pristine PEDOT/PSS. The introduction of NH3·H2O shows a positive effect on Seebeck coefficient with a large decline on electrical conductivity of PANi/PEDOT/PSS. The Raman spectroscopy, scanning electron microscopy (SEM), and UV-vis spectroscopy were used to obtain the morphology and structure information of PANi/PEDOT/PSS.  相似文献   

19.
Lithium ion conducting solid polymer electrolyte (SPE) films consisted of poly(methyl methacrylate) (PMMA) matrix with lithium perchlorate as a dopant ionic salt, poly(ethylene glycol) as plasticizer and montmorillonite clay as inorganic nanofiller have been prepared by classical solution casting and high intensity ultrasonic assisted solution casting methods. The X‐ray diffraction study confirmed the amorphous structure of all these PMMA‐based solid electrolytes and the clay nanosheets existed in exfoliated form in their amorphous phase. Dielectric relaxation spectroscopy had been employed for the investigation of complex dielectric function, ac electrical conductivity, electric modulus, and impedance spectra of these electrolytes over the frequency range from 20 Hz to 1 MHz. It was observed that the dielectric properties and ionic conductivity of the electrolytes strongly depended on the sample preparation methods, and also had changes with addition of the clay nanofiller. Temperature‐dependent dielectric study of the electrolyte films confirmed that their dc ionic conductivity and conductivity relaxation time values obeyed the Arrhenius behavior. This study also revealed that the lithium ion transportation in the ion–dipolar complexes of these electrolytes occurred through hopping mechanism and it was correlated with the conductivity relaxation time. Preparation of these electrolyte films through ultrasonic assisted solution casting method increased the ionic conductivity by more than one order of magnitude in comparison to that of the classical solution casting method, which revealed that the former was a novel method for the preparation of these SPEs of relatively enhanced ionic conductivity. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42188.  相似文献   

20.
New conducting polymer films have been prepared on platinum electrodes by anodic polymerization of 1‐naphthol in the presence of methyl naphthyl ether (MNE) in MeCN containing 0.1 M LiClO4. The presence of MNE was found to suppress oligomer formation and significantly affect the physicochemical properties of the polymeric films formed via copolymerization, as confirmed by IR and elemental analysis. In contrast to the autocatalytic polymerization mechanism observed during poly(1‐naphthol) formation, a competitive catalytic‐inhibiting mechanism was found for the copolymer. The copolymer (1:1 and 1:10 1‐naphthol:MNE) showed electrochemical activity similar to that of poly(1‐naphthol). The copolymer films resisted degradation in MeCN effectively and charging–discharging cycles led to doubling of the redox charge after about 20 cycles, while poly(1‐naphthol) films lost 90% of the redox charge under the same conditions. The conductivity of copolymer (1:1) films were 1–2 orders of magnitude lower than that of poly(1‐naphthol). The diffusion coefficients of the charge transfer for the doping–dedoping processes of the copolymer films were slightly lower than for poly(1‐naphthol), but the diffusion coefficients for the redox [Fe(CN)6]3−/4− were comparable for both films. © 2000 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号