首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为提高清洁变黏酸的耐温性,实现在高温碳酸盐岩裂缝性储层中的转向均匀布酸功能,通过分析清洁变黏酸作用机理及高温失效原因,提出了针对性的研究对策及高温助剂分子结构模型,研制出清洁变黏酸周高温稠化剂,优化确定了盐酸、高温稠化剂、缓蚀剂、铁离子稳定剂、无机盐等种类及用量,形成了高温清洁变黏酸技术.实验结果表明:①清洁变黏酸在碳酸盐岩心中具有良好的转向作用及理想的pH值变黏特性;②在120℃,170 s-1条件下,变黏酸鲜酸剪切70 min黏度不超过17 mPa·s,具有良好的可泵性;乏酸剪切70 min仍保持黏度高于90 mPa·s,具有良好的高温变黏能力,验证了分子结构设计的正确性.  相似文献   

2.
The authors present a comprehensive evaluation of phase behaviors of alkaline/surfactant/polymer (ASP) systems. The experimental results proved that the phase behavior of mixed-surfactant solutions (single- and double-tail anionic surfactants) would be better than the one of single surfactant. These mixtures were also more compatible with polymer, and adjusted optimum salinity to the reservoir brine. They next examined the role of alkalis in ASP process. Three types of alkalis were tested to select the optimum one for high-temperature reservoir. This study showed that sodium metaborate is the best choice.  相似文献   

3.
In this work, three ionic surfactants (F, G, and H) were evaluated in surfactant adsorption experiment and oil recovery tests. Both sets of tests were carried out in a surfactant flooding apparatus, using 30 psi as pressure gradient. The concentration of the solutions injected in adsorption and recovery tests were 30–80% above the critical micelle concentration, to ensure micelle formation. The results obtained showed that adsorption was higher for G (2.7 g.L?1) and the better oil recovery was for G (89.0%).  相似文献   

4.
低碱三元复合体系用于聚驱后进一步提高采收率   总被引:7,自引:1,他引:7  
在室内实验研究了大庆油田条件下,水驱、聚合物驱之后低碱(NaOH)浓度的ASP三元复合驱的驱油效果。所用聚合物为M=1.6×107,HD=26%的HPAM;表面活性剂为Witco公司的烷基苯磺酸盐ORS-41和国产月桂酰二乙醇胺NNR,用矿化度3.7 g/L的模拟注入水配液,模拟油黏度9.56 mPa.s,实验温度45℃。NaOH/0.3%ORS-41/1.2 g/L HPAM溶液的黏度~剪切速率曲线和储能模量~振荡频率曲线,随碱浓度减小(1.5%或1.2%~0.1%)而整体上移,即溶液黏度和黏弹性增大。在Kw≈1μm2、VK=0.72的三层段非均质人造岩心上,水驱、聚合物驱(1000 mg/L,0.57 PV)后注入0.3%NaOH/0.3%ORS-41或NNR/1600或1800 mg/L HPAM溶液(0.30PV),采收率增值为13.5%~16.0%,最终采收率为66.4%~70.5%,含水曲线表明聚驱和复合驱过程中有油墙产生;NNR体系界面张力为10-2mN/m,ORS-41体系为10-1mN/m。在不同直径、连接有不同直径盲端的平行流道微观模型上,直接观察到水驱、聚驱后复合驱的波及区域明显大于水驱后聚驱的波及区域,聚驱后水驱油藏实施低碱三元复合驱可进一步增大波及体积。图5表1参4。  相似文献   

5.
董珍  杨飞  刘哲  金勤武  赵建社 《油田化学》2013,30(3):411-415
本文以非离子型表面活性剂月桂醇聚氧乙烯醚和马来酸酐、反丁烯二酸为主要原料,合成了一种表/界面活性很高的阴-非离子型Gemini表面活性剂——羧化月桂醇聚氧乙烯醚马来酸双酯表面活性剂(CAPM),并对其进行结构表征。对目标产物进行了表面、界面的性质以及真实砂岩微观模型驱替的研究。结果表明:在水中加入所合成的羧化月桂醇聚氧乙烯醚马来酸双酯表面活性剂CAPM后,水溶液的表面张力降低至27.08 mN/m,临界胶束浓度达0.163g/L,与原油间的油/水界面张力可降低至10-3mN/m,并可以将砂岩中的原油有效驱替。图9表1参17  相似文献   

6.
Surfactants can play major role in increasing oil recovery factor through interfacial tension reduction. In the present study, a new synthetic method was used to prepare (S)-2-amino-6-dodecanamidohexanoic acid, an amino acid–based surfactant then it was applied as an oil recovery agent for the first time. The structure of this surfactant was studied using FTIR and 1H NMR spectroscopy. The critical micelle concentration was found to be value is 0.4–0.5 wt% using surfactant solution conductivity, pH, and IFT methods. A 56.50% reduction of IFT was recorded using this environmentally friendly surfactant.  相似文献   

7.
烷基苯磺酸盐表面活性剂的性能直接影响强碱三元复合驱的开发效果。通过研究原油组成、油砂吸附等对烷基苯磺酸盐表面活性剂浓度及强碱三元复合体系界面张力的影响,建立了原油分子量与表面活性剂当量之间的定量匹配关系。结果表明,依据该定量匹配关系选择合适当量的表面活性剂可使三元复合体系与大庆地区 不同原油间达到超低界面张力,提高了强碱三元复合体系的适应性;原油组成影响表面活性剂在油水相中的分配比例,原油中的沥青质含量越高,水相中的表面活性剂浓度越低,原油组成对表面活性剂当量的影响较小;油砂吸附改变了表面活性剂的当量及组成分布,导致三元体系中表面活性剂的浓度降低、三元体系界面张力升高,可采取增加高碳组分、调整表面活性剂当量的方法,扩大复合体系在地下运移过程中的超低界面张力作用距离。图11表3 参16  相似文献   

8.
用于低渗透高温油藏降压增注的表面活性剂二元体系   总被引:1,自引:0,他引:1  
针对低渗高温的留西油藏,研究了碳酸钠/季铵盐表面活性剂二元体系的降压增注及驱油性能.所用季铵盐为工业品,二元体系用矿化度627 mg/L的注入水配制,碳酸钠浓度为2 g/L.季铵盐浓度为1.5 g/L的二元体系与路44断块高凝高黏原油间的界面张力(75℃)在10-1~10-2 mN/m范围,该体系在120℃热老化13天后界面张力稳定在10-2mN/m;该体系在路44断块岩心片上的接触角为10.2°(注入水为56.7°);含黏土9%的岩心粉在该体系中的膨胀率降低17.24%.在80℃下,注水引起气测渗透率1.26×10-3~4.64×10-3μm2的油饱和天然岩心注入压力大幅升高,连续注入季铵盐浓度0.5~2.0 g/L的二元体系时,注入压力下降并趋于平稳,当季铵盐浓度为1.5g/L时压降率最大(38.78%),采收率增幅也最大(9.84%);在水驱之后注入1.5 g/L季铵盐的二元体系,压降率和采收率增幅均随注入量增大(0.5~2.0 PV)而增大,注入量1.0 PV时压降率较高(27.32%)而采收率增幅为20.51%,十分接近最高值.  相似文献   

9.
In the present study, a new chemical formulation is designed by combining acrylic acid with the conventional alkali-surfactant-polymer (ASP) components. Acrylic acid generates precipitation inhibitor that dissolves insoluble salts. The salts known as precipitations are formed by the reaction of added chemicals with carbonate reservoir minerals or brine compositions. Various fluid-fluid compatibility tests were first performed to find an optimum acid-alkali ratio to keep ASP solutions without any precipitations for 30 days at 80°C. Using the optimum ratio, a comprehensive study was conducted to investigate the impact of acid, acid-alkali, and acid-alkali-surfactant on the viscosity of copolymer. The optimum acid-alkali ratio was found 0.6:1.0. It was observed that blend of acid with ASP solutions did not cause significant impact on the polymer viscosity. This new chemical combination provided sufficient viscosity for mobility control in the hard brine environment. Hence, the main feature of this work is the development of acid-ASP formulation, which can be more feasible for enhanced oil recovery in carbonate reservoirs as compared to conventional ASP.  相似文献   

10.
Chemical stimulation such as surfactant flooding in petroleum reservoirs makes efforts to produce remained oil and improve sweep efficiency by means of different phenomena such as lowering interfacial tension and wettability alteration of reservoir rock. Implementing concentration of surfactant through surfactant flooding is one of the big challenges while interfacial tension between surfactant solution and oil after certain concentration involves little changes such as critical micelle concentration (CMC). This article highlights the effect of nanosilica on CMC of Zyziphus Spina Christi, as sugar-based surfactant, in aqueous solutions for enhanced oil recovery and reservoir stimulation purposes. A conductivity approach was selected to assess the CMC of the introduced surfactant in aqueous solution at 25°C. The influence of nanosilica concentrations on CMC variation of introduced surfactant is considered. It is found that CMC of introduced surfactant decreased while the concentration of the nanosilica increased. Results from this study can aim in optimum condition selection of surfactant flooding as an enhanced oil recovery ends.  相似文献   

11.
双子表面活性剂(C12-2-12.2Br-1)表面活性与驱油效率研究   总被引:3,自引:0,他引:3  
用滴体积法测定了几种双子表面活性剂和对应常规单链表面活性剂的表面张力-浓度曲线,确定了各自的临界胶束浓度,筛选出高效驱油用表面活性剂—C12-2-12. 2Br^-1;并在不同条件下对其进行了室内模拟驱油评价实验。表面张力测试表明,双子表面活性剂—C12-2-12. 2Br^-1的临界胶束浓度仅为547mg/L,对应表面张力为30.72mN/m,较对应单链表面活性剂DTAB具有更优的表面活性。驱油实验表明C12-2-12. 2Br^-1的驱油效率与浓度呈同向变化关系,其浓度为500mg/L即可提高采收率6.45%,其效果明显优于常规单链表面活性剂-DTAB;该剂更适合于中、低渗油藏水驱采收率的提高。  相似文献   

12.
为研究聚合物表面活性剂(聚表剂)与聚合物增黏、抗盐和驱油能力差异大的原因,采用FT-IR谱、SEM电镜表征两者的分子结构和聚集形态,通过岩心物理模拟实验与核磁共振技术分析两者的注入性、传导性、液流转向和驱油能力.结果表明:聚表剂因存在网状聚集体结构,相同质量浓度(500~2 000 mg/L)的聚表剂黏度是聚合物的3~...  相似文献   

13.
VES自转向盐酸液变粘特性研究   总被引:7,自引:0,他引:7  
赵增迎  杨贤友  连胜江  张秀丽 《油田化学》2005,22(4):307-309,295
实验研究了未指名孪二连型粘弹性表面活性剂(VES)自转向盐酸液的变粘特性。5%VES HCl CaCl2模拟酸液的粘度在pH值高于-0.57后迅速上升,pH值1~2时有最大值,这与前人的实验结果略有不同。将2%~6%VES 1%HCl 18.25?Cl2模拟酸液的pH值调至~2,得到的凝胶粘度随VES浓度增大而增大,随温度升高(25~70℃)经历不同的极大值(30~50℃)。5%VES 20%HCl酸液与CaCO3完全反应、pH升至4~5时,形成的凝胶粘度也随温度升高而经历极大值(67℃),但在30~40℃区间粘度急剧波动。G′和G″的频率关系曲线表明0.1%HCl 5%VES 18.25?Cl2模拟酸液的弹性和粘性均大于含0.01%和1.0%HCl的模拟酸液。pH值改变(0.17~13.0)不会使6%VES溶液增粘;加入56~219 g/L CaCl2不会使20%HCl 6%VES酸液增粘;加入3.4mol/L Na 并调pH值至中性或加入2.3 mol/L Ca2 并调pH值至弱酸性,使0.1%HCl 5%VES酸液粘度增大至78~80 mPa.s;因此同时加大pH值和阳离子(Ca2 或Na )浓度,才能使VES酸液增粘。图7表2参10。  相似文献   

14.
针对强碱三元复合驱油生产过程中油井结垢严重的问题,通过室内模拟油层温度和压力的物模实验,研究了三元复合驱体系在喇嘛甸北东块萨Ⅲ4-10运移过程中提高采收率程度、离子变化趋势、溶蚀及沉积特征。实验结果表明,室内模拟油藏条件下,三元复合驱在水驱基础上(39.90%)可提高采收率22.7%;实验过程中出现溶蚀-沉积及颗粒运移,造成岩心的注入压力及渗透率的相关性波动,解释了三元复合驱矿场试验过程中离子变化特征及结垢情况。  相似文献   

15.
本文合成了一种耐温抗盐表面活性剂,通过红外光谱、拉曼光谱以及元素分析考察了该表面活性剂的结构,并研究了其表界面活性和乳化性能。研究结果表明:所合成产物与目标产物———羟磺基甜菜碱一致;羟磺基甜菜碱溶液具有较低的表面张力,临界胶束浓度为8.099×10^-5 mol/L;在0.5~3.0 g/L浓度范围内,羟磺基甜菜碱溶液与原油间的界面张力(稳定值)均能够达到超低,且在30℃~80℃较宽的温度范围内均能达到超低界面张力;此外羟磺基甜菜碱还具有一定的乳化能力。羟磺基甜菜碱作为一种具有良好应用前景的表面活性剂,有望应用于国内外高温高盐油藏。  相似文献   

16.
新疆克拉玛依油田QD1区克拉玛依组下亚组砾岩油藏经历长期注水开发,储集层非均质性变强,裂缝和优势通道发育,后续聚合物驱过程中出现采出井产聚浓度高等问题,影响了聚合物驱效果。为认识砾岩油藏聚合物驱产聚浓度变化规律,以该区油藏储集层特征和流体为研究对象,采用生产动态分析、理论公式计算等多种技术手段,针对聚合物驱生产阶段划分、产聚浓度上升规律、产聚浓度界限图版和聚窜井治理压力下限等开展了研究。结果表明,砾岩油藏聚合物驱生产阶段可以划分为注聚初期、见效高峰期、见效后期和后续水驱4个阶段。见效高峰期一般为2~3 a,高峰期内最大产聚浓度为737.2 mg/L,最大相对产聚浓度不超过0.550,相对产聚浓度上升率不超过2.3;140 m和120 m井距相对产聚浓度上升率合理范围为2.3~6.0,对应相对产聚浓度为0.276~0.720,产聚浓度为414.0~1080.0 mg/L;优势通道、压裂裂缝和缝道共存3种聚窜类型井治理的压力下限标准分别是8.0 MPa,10.0 MPa和9.5 MPa.此研究成果对该区及同类型油藏聚合物驱生产动态调整和聚窜井分类治理具有借鉴意义。  相似文献   

17.
本文在渤海绥中361海上油藏条件下,测定了由磺酸盐型双子表面活性剂为主的表面活性剂(辛基酚基聚氧乙烯醚TX100与磺酸盐型双子表面活性剂按质量比1∶4)与疏水缔合聚合物组成的SP二元复合驱体系的黏度及其与渤海绥中361脱气原油间的界面张力,并考察该体系的抗温性、耐盐性、吸附性及老化稳定性等,测定了该驱油体系在不同渗透率岩心中的阻力系数和残余阻力系数,在三层非均质岩心上进行了表面活性剂浓度不同的6个室内驱油实验。研究结果表明,配方为3000 mg/L表面活性剂+1750 mg/L聚合物的SP二元复合驱油体系具有良好的抗温、抗盐、抗剪切性及老化稳定性;该二元复合驱油体系黏度达40 mPa.s以上,可使油水界面张力降至10-3mN/m数量级,同时该体系在不同渗透率岩心中均能建立较高的阻力系数与残余阻力系数;室内驱油实验表明,在三层非均质岩心中,聚合物浓度为1750 mg/L,二元体系与原油界面张力由100mN/m(表面活性剂0 mg/L)降至10-2mN/m(表面活性剂750 mg/L)数量级时提高采收幅度很大;当界面张力由10-2mN/m(表面活性剂750 mg/L)降至10-3mN/m(表面活性剂1000 3000 mg/L),复合驱采收率增加幅度很小;总体上,该SP二元复合驱油体系具有良好的提高采收率能力,可提高采收率35%以上。图3表4参9  相似文献   

18.
大庆油田三元复合驱水岩反应实验研究   总被引:2,自引:1,他引:2  
王贤君  王庆国 《油田化学》2003,20(3):250-253
为了探寻大庆三元复合驱油田结垢的原因,实验测定了储层所含各种矿物和储层岩心与6.0g/L表面活性剂(S)ORS-41溶液、1.5g/L聚合物(P)HPAM溶液、12、50、100g/L碱(NaOH,A)溶液及ASP三元复合驱油溶液(A、S、P浓度分别为12、6.0、1.5mg/L)在45℃、0.1MPa压力下密闭振荡反应168h后,各溶液中K、Al、Fe、Si、Ca、Mg、Na离子浓度的变化。实验结果详列表中。粘土矿物伊利石、高岭石、绿泥石、蒙脱石,骨架矿物石英、钾长石、钠长石及储层岩样基本上不与S、P溶液发生作用,与A溶液作用较强烈,溶出的矿物离子量随A溶液浓度增大而增大。ASP溶液与岩样作用后溶出大量Si、Al离子,其中Si离子量较空白溶液中的量(3.0mg/L)增大40~70倍;在压力不变、温度由45℃升至80℃时,ASP溶液溶出的Si、Al离子量分别由172.2和6.0mg/L增至826.5和27.9mg/L,但不受压力增大的影响,随温度升高Ca离子溶出量增大,Mg离子溶出量不变;在45℃下压力由0.1MPa升至1.4MPa时,溶出的Ca、Mg离子量分别由0.4和0.6mg/L增至11.9和7.9mg/L。表2。  相似文献   

19.
重烷基苯石油磺酸盐(DH)与石油磺酸盐(LH)是三次采油中常用的表面活性剂,DH与强碱(NaOH)配成的三元复合体系及LH与弱碱(Na2CO3)配成的三元复合体系均表现出了良好的油水界面活性。为探索DH与LH复配的可行性,本文通过仪器检测和理论分析,从表面活性剂的复配比、表面活性剂浓度、碱浓度3个方面开展了复配表面活性剂弱碱三元复合体系界面张力和黏度性能特征评价。结果表明,表面活性剂复配比和加量对三元复合体系黏度的影响较小,当DH、LH复配比为1∶1时,复配表面活性剂三元复合体系与大庆原油间可以实现超低界面张力,在80 min达到8.63×10-3mN/m;随复配表面活性剂质量分数的降低,界面张力增加,当表面活性剂质量分数为0.25%时,界面张力最优。Na2CO3加量为0.2%1.0%时,随着碱浓度的升高,复配表面活性剂三元复合体系的黏度降低,界面张力减小。推荐碱加量为0.8%1.0%。图2表2参12  相似文献   

20.
以二乙胺、二氯乙烷和溴代十二烷为原料,根据胺的烷基化原理,通过两步法合成了双(二乙基十二烷)乙撑双季铵盐Gemini表面活性剂。对合成产物进行了红外光谱分析,其结构与预期结构相符。测定了其水溶液的表面张力及临界胶束浓度,结果表明其具有较高的表面活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号