首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The natural fibers (banana, hemp and sisal) and polystyrene (PS) were taken for the preparation of natural fiber polymer composites in the different ratios of 40:60, 45:55, 50:50 and 55:45 (wt/wt), respectively. These fibers were esterified with maleic anhydride (MA) and the effect of esterification of maleic anhydride was studied on surface resistivity and volume resistivity of natural fiber/polystyrene composites. It was found that the untreated fibers composites show more surface resistivity and volume resistivity in comparison to maleic anhydride treated fibers composites. An untreated hemp fibers composite shows maximum surface and volume resistivity while maleic anhydride treated sisal fibers composites show minimum surface and volume resistivity.  相似文献   

2.
In this work the fibers of banana, hemp, and sisal are employed as fillers for the formation of wood polymer composites with polystyrene in the different ratios of 40:60 and 45:55 (wt/wt), respectively. These fibers were esterified with maleic anhydride, and the effect of maleic anhydride was studied on absorption of steam and water at ambient temperature in wood polymer composites. Untreated fiber composites show more absorption of steam in comparison to maleic anhydride (MA)–treated fiber composites. The absorption of water increases with the increase in time from 2–30 h in all untreated fiber composites. The maximum absorption of water was found in hemp fiber composites and the minimum in sisal fiber composites. The maleic anhydride esterified fiber composites showed less absorption of water than the untreated fiber composites. Steam absorption in MA treated and untreated fiber composites is higher than the water absorption in respective fiber composites. The wood polymer composites containing low amount of fiber shows less absorption of steam and water at ambient temperature than the composites containing a greater amount of fiber in respective fiber composites.  相似文献   

3.
Hemp, banana, and agave fibers were employed for the preparation of wood–polymer composites using polystyrene in the ratio of 50 : 50 w/w. These fibers were esterified with maleic anhydride (MA) and the effect of MA was studied on the absorption of water at ambient temperature and steam in wood–polymer composites made from said fibers and polystyrene. The absorption of water increases with increase in time from 2 to 30 h in all fiber composites. The maximum absorption of water was found in hemp fiber composites, and the minimum in agave fiber composites. The MA-esterified fiber composites showed less absorption of water than did the untreated fiber composites. Steam absorption in MA-treated and untreated fiber composites is higher than the water absorption in the respective fiber composites. Untreated fiber composites show more absorption of steam in comparison to MA-treated fibers composites. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 681–686, 1998  相似文献   

4.
The polymer composites of HDPE and banana, hemp, and agave fibers (50 : 50, w/w) were prepared separately with and without treatment of maleic anhydride. The swelling phenomenon in terms of absorption of water and steam was studied and it was found that the steam penetrates more within a smaller period of time than the water at ambient temperature. The maleic anhydride treatment on these fibers showed the ester-ification of fibers, and because of that, the absorption (swelling) of steam and water is less than the untreated respective fibers composites.  相似文献   

5.
In this work, a comparison between different agave fiber surface treatments has been presented to improve the mechanical properties of rotomolded natural fiber composites (NFC). The fiber treatments were carried out with sodium hydroxide, 2‐chlorobenzaldehyde, maleic anhydride grafted polyethylene, acrylic acid, methyl methacrylate, and triethoxy vinyl silane. In particular, a simple dry‐blending technique was used to introduce agave fibers in the polymer matrix (linear medium density polyethylene). The samples were produced at 15 wt% fiber content and characterized in terms of morphology, density, hardness, and mechanical properties (tension, flexural, and impact). The results showed that surface treatments improved the homogeneity (uniform morphology) of NFC and the best mechanical improvements (77% for strength and 30% for stiffness) were obtained with maleic anhydride grafted polyethylene. POLYM. ENG. SCI., 56:856–865, 2016. © 2016 Society of Plastics Engineers  相似文献   

6.
The natural fibers (banana, hemp, and sisal) and high density polyethylene were taken for the preparation of natural fiber/polymer composites in different ratios of 40 : 60 and 45 : 55 (w/w). These fibers were esterified with maleic anhydride (MA) and the effect of esterification of MA was studied on swelling properties in terms of absorption of water, at ambient temperature, and steam. It was found that the steam penetrates more within lesserperiod of time than water at ambient temperature. Untreated fiber composites show more absorption of steam and water in comparison to MA‐treated fiber composites. The more absorption of water was found in hemp fiber composites and less in sisal fiber composites. Steam absorption in MA‐treated and untreated fiber composites are higher than the water absorption in respective fiber composites. The natural fiber/polymer composites containing low amount of fibers show less absorption of steam and water at ambient temperature than the composites containing more amount of fibers in respective fiber composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
Curaua fibers were studied as reinforcing agents for postconsumer polypropylene. The composites were processed by extrusion. The composite properties were investigated by mechanical tests, thermal methods, melt flow index, surface morphology, and water uptake. The variables studied were as follows: fiber contents (10 to 40 wt %), fiber surface treatment, initial fiber length, and modification of the polypropylene matrix. The treatment of the fiber with 5 wt % NaOH aqueous solution did not improve fiber‐matrix adhesion and the composites using 20 wt % of untreated curaua fibers presented the better mechanical properties. Feeding the extruder with fibers having shorter lengths (0.01–0.4 mm) produced better fiber dispersion, improving the mechanical properties of the composites. Composites prepared using fibers without surface treatment with postconsumer polypropylene and with polypropylene modified with maleic anhydride showed mechanical properties and water uptake similar to composites using the same polymer reinforced with other lignocellulosic fibers. The extrusion process caused also partial fibrillation of the fibers, improving their aspect ratio. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
The present work reports the study of the effect of different chemical functionalization methods on the interfacial characteristics of the polymer composites formed. The chemically modified carbon nanofibers were blended with polypropylene (PP) and PP modified with maleic anhydride on a mini twin‐screw extruder. The functionalization methods were designed for minimum fiber damage and enhanced fiber/matrix interactions by chemical reaction of the functional groups introduced at the nanofibers surface with the maleic anhydride grafted at the PP. The degree of nanofiber functionalization was studied using thermogravimetric analysis. The composites were analyzed for nanofiber dispersion, mechanical properties, and electrical resistivity. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

9.
In this study, an attempt has been made to utilize banana fiber (a natural fiber from agricultural waste) as reinforcement for low-density polyethylene (LDPE) to develop environmental friendly composite materials. LDPE/banana fiber composites were fabricated at different fiber loadings (10, 15, 20, 25, and 30 wt %) using compression molding technique. The composite with the composition of 25 wt % banana fiber was observed to be optimum on the basis of biodegradability and mechanical properties. Further, the effect of banana fiber surface treatment (alkali and acrylic acid) on the mechanical properties, morphology and water absorption behavior of the LDPE/banana fiber composites in the absence and presence of compatibilizer (maleic anhydride grafted LDPE, MA-g-LDPE) was comparatively studied. The alkali and acrylic acid treatment of the banana fibers led to enhanced mechanical properties and water resistance property of the composites, and these properties got further improved by the addition of the compatibilizer. The addition of compatibilizer to the acrylic acid treated banana fiber composites showed the most effective improvement in the flexural and impact strength and also, exhibited a reduction in the water absorption capacity. However, the tensile strength of the compatibilized composites with treated fibers resulted in slightly lower values than those with untreated fibers, because of the degradation of fibers by chemical attack as was evidenced by scanning electron microscopy (SEM) micrographs. SEM studies carried out on the tensile fractured surface of the specimens showed improved fiber-matrix interaction on the addition of compatibilizer.  相似文献   

10.
Banana (Musa paradisica), Hemp (Hibiscus cannabinus), and Agave (Agave jourcroydes) fibers were treated with Novolac resin for the formation of their composites in the ratio of 50 : 50 (wt/wt). These fibers were also treated with maleic anhydride, and it was found that composites based on treated fibers showed higher absorption of steam (at 100°C) up to 12 h; and beyond 18 h, it is less than the untreated fiber composites. However, at ambient temperature, the absorption of water is lesser for composites based on maleic anhydride-treated fiber than for composites based on untreated fibers. The SHORE-D hardness was commonly higher for composites based on maleic-anhydride-treated fibers. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1417–1421, 1998  相似文献   

11.
The main objective of this research was to synthesize a new compatibilisant agent (PVC‐g‐MA), which was grafted from the maleic anhydride on the PVC chains. The presence of maleic anhydride grafting on PVC was made evident by infrared analysis. PVC‐g‐MA was used like compatibilisant to solve the problem of the incompatibility between the hydrophobic polymeric matrix (PVC) and hydrophilic fiber (alfa). Composites samples were prepared with different alfa fiber loading (10, 20, and 30 wt %) and incorporating PVC‐g‐MA (1, 3, and 5 wt %) or PP‐g‐MA (3 wt %). The tensile properties, the thermal stability and the morphology of the composites were investigated. The result indicated that the PVC‐g‐MA increased the interfacial adhesion between the fibers and the polymer matrix and this effect was better than that obtained for the maleated‐polypropylene‐coupled composites. Microstructure analysis of the fractured surfaces of MAPP modified composites confirmed improved interfacial bonding. The addition of alfa and PVC‐g‐MA increased the thermal stability of the composites. The temperature of degradation of the polymer matrix increased about 16°C in comparison to the noncoupled composite, indicating that PVC‐g‐MA improved the thermal stability of the polymer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
The effect of coir surface modification on the compatibility of polypropylene (PP)/coir fiber (CF) composites, in the presence and absence of compatibilizer (maleic anhydride grafted polypropylene, PP‐g‐MA) was assessed. Chemical pulping of the fibers was performed with 2, 4, 8, and 12% NaOH solutions for a period of 2 h at (100 ± 4)°C. Pressed composite samples were subjected to tensile testing, scanning electron (SEM) and atomic force microscopy (AFM). Lignin and holocellulose concentrations of untreated and treated coir were determined. Pulping resulted in increased tensile strength of the composites containing coir treated with up to 2% NaOH, due to increased fiber roughness as evidenced by AFM. This property decreased when higher NaOH concentrations were used, likely due to increased deterioration of coir. The presence of compatibilizer in the PP composites containing treated coir altered adhesion due to chemical changes of the fiber surface. At high NaOH concentrations increased delignification and therefore increased exposure of hydroxyls favors reaction between the fiber hydroxyls and the carboxyl acids of the hydrolyzed maleic anhydride, present in the composites. POLYM. ENG. SCI., 55:2050–2057, 2015. © 2014 Society of Plastics Engineers  相似文献   

13.
Styrene–maleic anhydride (SMA) copolymers containing either 7 or 14% maleic anhydride were filled with either pine flour or dry-process aspen fiber from a medium density fiberboard (MDF) plant. Material properties of the filled and unfilled SMA plastics were compared with those of aspen-fiber-filled and unfilled polystyrene (PS). The fiber-filled SMA composites were equivalent or superior to unfilled SMA in strength, stiffness, and notched Izod impact strength. Filled PS composites outperformed or matched the performance of filled SMA composites in the parameters tested. Unnotched Izod impact strength of filled polymers was generally inferior to that of the unfilled polymers. Water absorption from a 90% relative humidity exposure, a 24-h soak, and a 2-h boil showed mixed results when compared to the unfilled polymers. Dynamic mechanical analysis showed no change in glass transition temperature (Tg) after the addition of filler for either SMA or PS composites. The presence of the anhydride functionality on the polymer backbone did not appear to improve the strength of the composite. No evidence was found for chemical bond formation between the SMA and wood fiber. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1567–1573, 1998  相似文献   

14.
《国际聚合物材料杂志》2012,61(3-4):223-234
Abstract

Chemithermomechanical pulp (CTMP) of aspen was used as a filler in high density (HDPE) and linear low density (LLDPE) polyethylenes. To improve the bonding between the fiber and polymer, different chemical treatments of the fiber a) treatment with different isocyanates b) coating with maleic anhydride was carried out. Composites with isocyanate treated wood fibers produced higher tensile strength compared to untreated fiber composites. But when compared to diisocyanate, the polyisocyanate treated fibers produced higher gain in strength. HDPE or LLDPE filled with maleic anhydride coated CTMP aspen fibers showed a slight decrease in strength with the increase in filler concentration. Tensile modulus generally increased with filler loading and was not much affected by fiber treatment.  相似文献   

15.
Wood flour-polypropylene foamed composites, in ratios of 10:90, 20:80, 30:70, and 40:60 (wt./wt.), were prepared with and without maleic anhydride treatment of wood flour and maleic anhydride-grafted PP (MAgPP). The effects of the amount of wood flour and its treatment on the morphology, the mechanical properties, and the thermal properties of the composites were investigated. Vicat softening temperatures (VST) were recorded as 112.9°C, 103.2°C, and 96.2°C for MAgPP wood flour (MPP), maleic anhydride-treated wood flour (MWF), and untreated wood flour (UWF) (40:60 wt./wt.) foamed composites, respectively. The heat distortion temperatures (HDT) were measured to be 80°C, 76°C, and 58°C for the respective composites. DSC thermograms showed an increase in the crystallinity of MPP and MWF composites with an increase in the ratio of wood flour in the composite, whereas the opposite trend was observed in untreated wood flour. Except for impact strength and flexural strength, Young's modulus, flexural modulus, and hardness all increased with an increase in wood flour content. The micrographs confirmed the foaming. The improvement in the properties of the composites is due to the increment in interfacial bonding between polymer and wood flour, which is caused by the compatibilizers.  相似文献   

16.
To improve mechanical and thermal properties of a hexagonal boron nitride platelet filled polymer composites, maleic anhydride was studied as a coupling agent and compatibilizer. Injection molded blends of acrylonitrile butadiene styrene (ABS), high-density polyethylene (HDPE), and maleic anhydride with boron nitride filler were tested for thermal conductivity and impact strength to determine whether adding maleic anhydride improved interfacial interactions between matrix and filler and between the polymers. Adding both HDPE and maleic anhydride to ABS as the matrix of the composite resulted in a 40% improvement in impact strength without a decrease in thermal conductivity when compared to an ABS matrix. The best combination of thermal conductivity and impact strength was using pure HDPE as the matrix material. The effective medium theory model is used to help explain how strong filler alignment helps achieve high thermal conductivity, greater than 5 W/m K for 60 wt % boron nitride. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48661.  相似文献   

17.
An acrylate‐modified tung‐oil waterborne insulation varnish was synthesized from tung oil, maleic anhydride, and acrylates via a Diels–Alder reaction and free‐radical polymerization, and the varnish could be solidified at a relatively low temperature with blocked hexamethylene diisocyanate as a curing agent. The resulting films were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. The insulation properties (electrical insulation strength, volume resistivity, and surface resistivity) of the varnish films were tested, and the resistances of films to salted water were evaluated. With an increase in the maleic anhydride content, the thermal stability of the film was improved, whereas the electrical insulation strength, volume resistivity, and surface resistivity decreased. The electrical insulation strength of the film after it was immersed in the NaCl solution was lower than that in dry state, and it decreased as the immersed time was prolonged. In particular, the electrical insulation strength loss of the film increased significantly at maleic anhydride contents beyond 25 wt %. Furthermore, the hardness of the film increased with increasing methyl methacrylate/N‐butyl acrylate ratio, whereas the flexibility and adhesion of film decreased to a certain degree at the same time. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41608.  相似文献   

18.
The mechanical performance of short randomly oriented banana and sisal hybrid fiber reinforced polyester composites was investigated with reference to the relative volume fraction of the two fibers at a constant total fiber loading of 0.40 volume fraction (Vf), keeping banana as the skin material and sisal as the core material. A positive hybrid effect is observed in the flexural strength and flexural modulus of the hybrid composites. The tensile strength of the composites showed a positive hybrid effect when the relative volume fraction of the two fibers was varied, and maximum tensile strength was found to be in the hybrid composite having a ratio of banana and sisal 4 : 1. The impact strength of the composites was increased with increasing volume fraction of sisal. However, a negative hybrid effect is observed when the impact strength of the composites is considered. Keeping the relative volume fraction of the two fibers constant, that is, banana : sisal = 0.32 : 0.08 (i.e., 4 : 1), the fiber loading was optimized and different layering patterns were investigated. The impact strength of the composites was increased with fiber loading. Tensile and flexural properties were found to be better at 0.40 Vf. In the case of different layering patterns, the highest flexural strength was observed for the bilayer composites. Compared to other composites, the tensile properties were slightly higher for the composite having banana as the skin material and sisal as the core material. Scanning electron micrographs of the tensile and impact fracture surfaces of the hybrid composites having volume fraction 0.20 and 0.40 Vf were studied. The experimental tensile strength and tensile modulus of hybrid composites were compared with those of theoretical predictions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1699–1709, 2005  相似文献   

19.
The non‐isothermal crystallization behavior of cork–polymer composites (CPC) based on polypropylene (PP) matrix was studied. Using differential scanning calorimetry (DSC), the crystallization behavior of CPC with 15 wt % cork powder at different cooling rates (5, 10, 15, and 20 °C/min) was studied. The effect of a coupling agent based on maleic anhydride was also analyzed. A composite (PPg) containing polypropylene grafted maleic anhydride (PPgMA) and PP was prepared for comparison purposes. Crystallization kinetic behavior was studied by Avrami, Ozawa, Liu, and Kissinger methods. The Ozawa method fails to describe the behavior of these composites. Results show that cork powder surface acts as a nucleating agent during non‐isothermal crystallization, while the addition of PPgMA decreases the crystallization rate. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44124.  相似文献   

20.
Hybrid composites of Polypropylene (PP) reinforced with intimately mixed short banana and glass fibers were fabricated using Haake twin screw extruder followed by compression molding with and without the presence maleic anhydride grafted polypropylene (MAPP) as a coupling agent. Incorporation of both the fibers into PP matrix resulted in an increase in tensile, flexural and impact strength with an increasing level of fiber content upto 30 wt% at banana: glass fiber ratio of 15:15 wt% and 2 wt% of MAPP. The rate of water absorption for the hybrid composites decreased due to the presence of glass fiber and coupling agent. The effect of fiber loading in presence of coupling agent on the dynamic mechanical properties has also been analyzed to investigate the interfacial properties. An increase in the storage modulus (E′) of the treated composite indicates higher stiffness. The tan δ spectra confirms a strong influence of fiber contents and coupling agent on the α and β relaxation processes of PP. The nature of fiber matrix adhesion was examined through scanning electron microscopy (SEM) of the tensile fractured specimen. Thermal measurements were carried out employing differential scanning calorimetry (DSC) and the thermogravimetric analysis (TGA) which indicated a decrease in the crystallization temperature and thermal stability of PP with the incorporation of MAPP treated banana and Glass fiber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号