首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
基于气相色谱-质谱(GC-MS)测定催化裂化柴油(LCO)及其加氢产物中芳烃的组成。根据色谱保留时间和质谱断裂特征,分析了LCO及其加氢产物中芳烃的类型与结构,并对C9~C11的CnH2n-8类及CnH2n-12类芳烃进行了分子结构鉴别。结果表明:CnH2n-8类芳烃在LCO中为具有五元环结构的茚满类,在加氢产物中既有四氢萘类,也有茚满类,后者可由前者发生异构化反应生成;CnH2n-10类芳烃在LCO中是以含有双键的环烷芳烃为主,如茚类、二氢萘类,在加氢产物中则是以含有饱和环结构的芳烃,如二环烷基苯类为主;LCO及其加氢产物中的CnH2n-16类芳烃均为芴类;萘类侧链的碳数、个数与位置均会影响其加氢转化率。此研究可为芳烃的选择性加氢以及后续加工提供信息。  相似文献   

2.
采用全二维气相色谱 高分辨飞行时间质谱(GC×GC/HR-TOF MS)对催化裂化轻循环油(LCO)中的芳烃化合物进行详细表征。通过质谱图解析、沸点信息和标准物质保留时间对比,结合仪器高分辨率的优势,确定LCO中的主要芳烃类型及结构。对相同Z值、但类型不同的芳烃在总离子流色谱图中的峰面积进行归一化计算,结合SH/T 0606-2005法测定结果,得到不同类型芳烃在LCO中的含量。结果表明:LCO中除含有Z值为-6的烷基苯类、Z值为-12的萘类和Z值为-18的菲类和蒽类化合物外,还含有Z值为-8的芳烃包含茚满类和四氢萘类化合物,以茚满类为主;Z值为-10的芳烃主要为茚类,含有少量的二环烷基苯类;Z值为-14的芳烃包含联苯类、苊类和二苯并呋喃类化合物,以苊类为主;Z值为-16的芳烃主要为芴类,不含苊烯类化合物。该方法可以提供更为详细的芳烃类型和单体化合物的分子组成信息。  相似文献   

3.
以不同种类和不同含量高芳香性的催化裂化产物重循环油(HCO)和轻循环油(LCO)作为添加剂,考察了其对常压渣油加氢脱金属反应(HDM)性能的影响。结果表明,HCO和LCO添加剂的加入,可改善渣油在反应过程中的扩散性能,促进渣油中沥青质的溶解,从而提高渣油的HDM性能,其对加氢脱镍(HDNi)性能的提高更优于加氢脱钒(HDV)。同时发现,加入高芳香性添加剂后,渣油HDM过程中S、N和CCR的脱除率均有提高,反应产物的相对分子质量分布明显向低相对分子质量方向移动;随着LCO添加剂含量的增加,渣油的HDNi、HDV性能逐步提高,但当LCO质量分数增加到20%后,其提高渣油HDM性能的作用稍有下降。  相似文献   

4.
采用固定床反应器,对加氢精制催化剂上的深度加氢脱硫(HDS)动力学进行研究,考察了反应温度、氢分压和空速对柴油脱硫效果的影响。根据柴油中各种硫化物的脱除行为,按被脱除的难易程度将柴油中的硫化物分为3类,构成三集总HDS模型,获得不同温度下的表观活化能(E)、指前因子(A)和对氢分压的分级数值。假定3类硫化物的活化能不变,将其指前因子与柴油的密度和馏程相关联,建立3个指前因子与中平均沸点的关系曲线,结合按温度切割的柴油窄馏分个数,建立三集总一级反应动力学模型,对方程进行了相关系数(R2)和残差检验。结果表明,所得动力学模型与实验数据吻合良好,在实际应用中可为开发新型超深度HDS催化剂及工艺提供理论指导。  相似文献   

5.
采用小型固定床加氢装置和Ni Mo型加氢裂化催化剂进行催化裂化柴油(LCO)加氢裂化反应,采用TG MS、GC MS、13C NMR和元素分析手段研究了催化剂积炭的类型和组成,并探讨了积炭的形成原因。结果表明,根据积炭燃烧的难易程度,催化剂积炭分为3种类型。积炭为缩合程度较高的稠环芳烃,侧链较少,且以短侧链为主。积炭中难溶性积炭较多,可溶性积炭主要为芘及其同系物和晕苯及其同系物,并含有少量氮杂环化合物。积炭前身物主要为芳烃,而LCO中芳烃含量过高以及较高的反应温度、低的氢分压是LCO加氢裂化过程催化剂积炭形成的主要原因。  相似文献   

6.
以长岭渣油作为原料油,在不同操作条件下,研究了中国石化石家庄炼化分公司MIP催化裂化重柴油的掺入对渣油加氢的影响。结果表明,MIP催化裂化重柴油的掺入使得脱硫率和脱(Ni+V)率均有提高,脱硫率最高提高了2.36百分点,脱(Ni+V)率最高提高了3.14百分点。收集渣油加氢生成油进行催化裂化试验,结果表明,按循环操作计算,MIP催化裂化汽油收率可增加8.69百分点。  相似文献   

7.
Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur content of hydrogenated residual oil. The established ANN model covered 4 input variables, 1 output variable and 1 hidden layer with 15 neurons. The comparison between the results of two models was listed. The results showed that the predicted mean relative errors of the two models with three ...  相似文献   

8.
在中型加氢试验装置上,采用NiMoW/Al2O3加氢精制催化剂对催化裂化柴油进行加氢精制,以提高柴油的十六烷值,考察了反应温度、体积空速、氢油体积比等工艺参数对催化裂化柴油加氢精制产品十六烷值及其烃类反应规律的影响。结果表明:在6.4 MPa氢分压条件下,经过不同深度加氢精制后产品柴油的十六烷值有较大幅度的提高,十六烷值可以提高7~13个单位;催化裂化柴油中各烃类在具有高加氢活性的Ni-Mo-W/Al2O3加氢精制催化剂作用下,对提高产品十六烷值有利的反应主要是芳烃加氢饱和反应;反应温度、体积空速、氢油比等操作条件对提高催化裂化柴油十六烷值有较大的影响,在氢分压一定的条件下,适宜的反应温度和氢油体积比、较低的体积空速等有利于芳烃加氢饱和反应,从而提高催化裂化柴油的十六烷值。  相似文献   

9.
Light cycle oil (LCO) can obtain the characteristics of a good diesel fuel-blending component, if first it has been upgraded. Solvent extraction is a method of choice, mostly due to the process economics. In this work the influence of temperature and solvent to feed ratio (S/F) in LCO extraction with acetonitrile was studied. Detailed composition of the extraction products was assessed by gas chromatography-mass spectrometry and high performance liquid chromatography. S/F ratio found to influence process performance more drastically compared to the temperature. Increase of S/F ratio decreases raffinate yield, while leading to a better product quality. Based on the results of this work, the extraction process can be optimized to achieve the highest possible raffinate yield with adequate properties as diesel fuel component.  相似文献   

10.
催化轻循环油富含重芳烃(60 wt%~80 wt%),密度大,十六烷值低,很难采用常规的加氢改质技术加工利用。本文介绍了可以由催化轻循环油生产高附加值产品的催化轻循环油加氢裂化技术,通过加氢催化剂与反应条件的优化,可以同时生产高辛烷值汽油和超低硫柴油调和组分。在固定床加氢反应器上分别研究了催化剂类型,反应温度,压力对汽油产品研究法辛烷值的影响,试验结果表明高的反应温度,适合的压力有利于生产高辛烷值汽油。典型的FD2G技术的工业应用结果表明,采用本技术可生产硫含量小于10μg.g-1的清洁柴油组分和研究法辛烷值高达92的清洁汽油,在目前的汽柴油的价格体系下,本技术经济性更好,可以提高炼厂的效益。  相似文献   

11.
在固定床小型加氢实验装置上,以不同的催化裂化柴油为原料,模拟两段加氢处理技术生产低硫低芳烃柴油,考察加氢精制深度对柴油性质的影响。评价时第一反应器装填Ni-W催化剂,第二反应器装填Pt-Pd贵金属催化剂,通过调整空速和反应压力,得到不同加氢精制深度的柴油。结果表明:经过深度加氢精制,柴油的密度、折射率、硫含量、氮含量、总芳烃含量均减小,氢含量、十六烷值提高;加氢精制后的柴油芳烃含量与化学氢耗、折射率、密度、十六烷值成线性关系;不同催化裂化柴油加氢精制后的芳烃含量与十六烷值的线性拟合斜率和截距各不相同,与柴油的烃类组成和碳数分布密切相关,截距代表了芳烃完全饱和时的十六烷值,斜率反映了芳烃饱和对十六烷值的贡献;对总芳烃质量分数为88.2%的催化裂化柴油LCO-I,芳烃质量分数每降低1百分点,十六烷值可提高0.26个单位,芳烃完全饱和时十六烷值可达到42,对总芳烃质量分数为31.3%的混合柴油LCO-II,芳烃质量分数每降低1百分点,十六烷值可提高0.66个单位。  相似文献   

12.
采用20 mL高压连续反应装置,在压力5.0 MPa、体积空速0.7~3.0 h-1、氢/油体积比400、温度330℃的条件下,考察了焦化柴油中难脱除的二苯并噻吩类含硫化合物(DBTs)在工业化负载型NiMo/γ-Al2O3催化剂上的加氢脱硫(HDS)反应活性。采用气相色谱 脉冲火焰光度检测器(GC-PFPD)对加氢前后焦化柴油中含硫化合物进行了定量分析,研究了它们在深度HDS过程中的脱除规律,建立了难脱除DBTs的HDS反应一级动力学模型。焦化柴油的深度HDS过程中,DBTs尤其是4位和6位取代的DBTs是最难脱除的含硫化合物,各含硫化合物的HDS反应速率常数大小顺序为DBT、 4-MDBT、4-EDBT、3,6-DMDBT、4-E,6-MDBT、2,4,6-TMDBT、4,6-DMDBT。  相似文献   

13.
借助球差矫正扫描透射电子显微技术(Cs-STEM)对Al2O3负载的加氢脱硫(HDS)催化剂进行原子尺度结构表征,以期解析活性相结构与其活性之间的关系。研究表明:在Al2O3表面,存在金属单原子、“原子簇”及“小金属簇”等“碎片”结构,该结构利用常规透射电子显微技术(TEM)无法清晰地观察到。通过分析这些微观结构的衬度信息及结合X射线能谱的结果(STEM-EDS)可知,该“碎片”结构为分散在Al2O3载体表面的活性金属组分。根据不同外界条件(硫化度、温度)下HDS催化剂的原子尺度结构图可分析出,这些金属“碎片”结构随硫化程度的增加或温度的升高,逐渐发生聚集,形成具有一定几何形状的MoS2活性相片晶。此外,将微观结构与HDS活性进行关联可知,“碎片”结构对催化剂的HDS活性具有一定的影响。  相似文献   

14.
Abstract

Hydrodesulfurization (HDS) is a catalytic process used to remove sulfur compounds, which leads to very low sulfur concentrations. HDS turns more complicated and severe according to the feedstock boiling range, since sulfur compounds present in light cuts, normally sulfides and mercaptanes, are easy to remove, and sulfoaromatic compounds, specially polycyclics, are the more refractive ones (Speight, J. G. (1981 Speight, J. G. 1981. The Desulfurization of Heavy Oils and Residua Chemical Industries 4. , 2nd ed. Marcel Dekker Inc.  [Google Scholar]). The Desulfurization of Heavy Oils and Residua. 2nd ed. Marcel Dekker, Inc.: Chemical Industries 4.) The hydrogen sulfide (H2S) produced in the HDS has an inhibiting effect on the same reaction, as it has been widely observed (McCulloch, D. C. (1983 McCulloch, D. C. 1983. Applied Ind. Catal., I: 69 [Google Scholar]). Applied Ind Catal. I:69; National Petroleum Refining Association (NPRA). (1993 National Petroleum Refining Association, NPRA. 1993. Questions & Answers 99 [Google Scholar]). Questions & Answers, 99; Leglise, J., Van Gestel, J., Duchet, J. C. (1994 Leglise, J., Van Gestel, J. and Duchet, J. C. Symposium on advances in hydrotreating catalysts presented before the division of petroleum chemistry Inc. 208th National Meeting. pp.pp. 533Washington, D.C.: American Chemical Society.  [Google Scholar]). Symposium on Advances in Hydrotreating Catalysts Presented before the Division of Petroleum Chemistry Inc. In: 208th National Meeting American Chemical Society. Washington D.C. p. 533). This effect is well known even at relatively low H2S concentrations (2 mol%) for commercial operation conditions (Leglise, J., Van Gestel, J., Duchet, J. C. (1994 Leglise, J., Van Gestel, J. and Duchet, J. C. Symposium on advances in hydrotreating catalysts presented before the division of petroleum chemistry Inc. 208th National Meeting. pp.pp. 533Washington, D.C.: American Chemical Society.  [Google Scholar]). Symposium on Advances in Hydrotreating Catalysts Presented before the Division of Petroleum Chemistry Inc. In: 208th National Meeting American Chemical Society. Washington D.C. p. 533). Due to this, the H2S removal from the recycled hydrogen to the reactor is mandatory in order to increase the desulfurization levels or to increase the processing capacity of an HDS plant. There are many options to low the H2S concentration in the H2 loop (Cooper, A., Stanislaus, A., Hannerup, P. N. (June 1993 Cooper, A., Stanislaus, A. and Hannerup, P. N. 1993. Hyd. Process., June: 84 June [Google Scholar]). Hyd Process 84; Johnson, A. D. (1983 Johnson, A. D. 1983. Oil and Gas J., 10: 78 [Google Scholar]). Oil and Gas J 10:78; Nash, R. M. (1989 Nash, R. M. 1989. Oil and Gas J., 13: 47 [Google Scholar]). Oil and Gas J 13:47; Suchanek, A. J., Dave, D., Gupta, A., Van Stralen, H., Karlsson, K. (1993 Suchanek, A. J., Dave, D., Gupta, A., Van Stralen, H. and Karlsson, K. NPRA Annual Meeting. AM-93-24 [Google Scholar]). In: NPRA Annual Meeting AM-93-24; Tippett, T., Knudsen, K. G. (1999 Tippett, T. and Knudsen, K. G. NPRA Annual Meeting. San Antonio, TX. AM-99-06 [Google Scholar]). In: NPRA Annual Meeting. San Antonio, TX. 1999 NPRA Annual Meeting, San Antonio, TX, AM-99-06.), which are from a simple purge adjustment for light naphtha HDS to a full treatment of the H2 stream for middle distillate HDS, where the H2S concentration can reach levels of 10 mol% (National Petroleum Refining Association (NPRA). (1993 National Petroleum Refining Association, NPRA. 1993. Questions & Answers 99 [Google Scholar]). Questions & Answers, 99). This work presents the economical analysis of the introduction of an Amine Treating Unit in an HDS plant in operation to remove H2S from the H2 stream recycled to the reactor.  相似文献   

15.
Hydrodesulfurization (HDS) is a catalytic process used to remove sulfur compounds, which leads to very low sulfur concentrations. HDS turns more complicated and severe according to the feedstock boiling range, since sulfur compounds present in light cuts, normally sulfides and mercaptanes, are easy to remove, and sulfoaromatic compounds, specially polycyclics, are the more refractive ones (Speight, J. G. (1981). The Desulfurization of Heavy Oils and Residua. 2nd ed. Marcel Dekker, Inc.: Chemical Industries 4.) The hydrogen sulfide (H2S) produced in the HDS has an inhibiting effect on the same reaction, as it has been widely observed (McCulloch, D. C. (1983). Applied Ind Catal. I:69; National Petroleum Refining Association (NPRA). (1993). Questions & Answers, 99; Leglise, J., Van Gestel, J., Duchet, J. C. (1994). Symposium on Advances in Hydrotreating Catalysts Presented before the Division of Petroleum Chemistry Inc. In: 208th National Meeting American Chemical Society. Washington D.C. p. 533). This effect is well known even at relatively low H2S concentrations (2 mol%) for commercial operation conditions (Leglise, J., Van Gestel, J., Duchet, J. C. (1994). Symposium on Advances in Hydrotreating Catalysts Presented before the Division of Petroleum Chemistry Inc. In: 208th National Meeting American Chemical Society. Washington D.C. p. 533). Due to this, the H2S removal from the recycled hydrogen to the reactor is mandatory in order to increase the desulfurization levels or to increase the processing capacity of an HDS plant. There are many options to low the H2S concentration in the H2 loop (Cooper, A., Stanislaus, A., Hannerup, P. N. (June 1993). Hyd Process 84; Johnson, A. D. (1983). Oil and Gas J 10:78; Nash, R. M. (1989). Oil and Gas J 13:47; Suchanek, A. J., Dave, D., Gupta, A., Van Stralen, H., Karlsson, K. (1993). In: NPRA Annual Meeting AM-93-24; Tippett, T., Knudsen, K. G. (1999). In: NPRA Annual Meeting. San Antonio, TX. 1999 NPRA Annual Meeting, San Antonio, TX, AM-99-06.), which are from a simple purge adjustment for light naphtha HDS to a full treatment of the H2 stream for middle distillate HDS, where the H2S concentration can reach levels of 10 mol% (National Petroleum Refining Association (NPRA). (1993). Questions & Answers, 99). This work presents the economical analysis of the introduction of an Amine Treating Unit in an HDS plant in operation to remove H2S from the H2 stream recycled to the reactor.  相似文献   

16.
综述了原油中含氮化合物的分离富集及鉴定方法,着重介绍了吸附色层法、酸抽提法、离子交换树脂法和络合法等分离富集方法的研究进展,并对以上各种方法的优缺点进行了讨论。原油中含氮化合物主要采用气相色谱-质谱(GC—MS)、气相色谱-原子发射检测器(CC—AED)、气相色谱-氮磷检测器(GC—NPD)、气相色谱-氮化物特定检测器(GC—NSD)和火焰电离检测器(FID)等技术进行分析鉴定。  相似文献   

17.
针对储油罐挥发气排放到大气中造成的能源浪费和环境污染,为满足排放指标要求,降低能耗和污染,从影响排放的原因及损耗类型出发,采用瓦廖夫斯基-契尔尼金公式对储罐自然通风损耗、"大呼吸"损耗和"小呼吸"损耗的损耗量进行计算,并应用挥发气回收技术对储油罐挥发性有机物进行回收利用,将回收的油田伴生气进行燃烧或发电,截止目前38座储油罐的挥发气全部回收利用,总回收气量达到21 513 m^3/d,年创经济效益1 095万元,解决了环境污染的同时,提高了原油商品率。  相似文献   

18.
由于国家对柴油质量要求的不断提高,许多炼油厂和科研单位已将柴油质重问题作为重点研究对象,并取得了一定的成果。文中主要在对比目前催化裂化柴油所采用的各种精制方法的基础上,论述了发展催化裂化柴油非加氢精制技术的重要性,并详细介绍了该技术的最新进展和研究结果。从各种催化裂化柴油非加氢精制技术的研究结果来看,它们都取得了良好的脱氮效果,柴油的安定性得到了很大提高,精制后的柴油质量都达到了一级品或优级品的要求,产品收率最低也达到了96%以上,具有良好的应用价值。根据目前国内柴油生产的现状,在这些研究结果的基础上,提出了切实可行的建议。  相似文献   

19.
Abstract

Based on the data of a hydrogenated residual oil fluid catalytic cracking (FCC) process in a petrochemical company, the effect of hydrogenated residual oil four-component (saturates, aromatics, resins, and asphaltenes; SARA) property on sulfur distribution of light oil in an FCC process was reviewed and a conjunction formula between sulfur distribution of light oil and SARA property was established. The associated results indicated that sulfur distribution of light oil in the FCC process was reduced as the saturate, aromatic, and resin component of hydrogenated residual oil increased, and the effect factor decreased in the order, saturate > aromatic > resin. On the other hand, the enhancement of the asphaltene component made the sulfur distribution of light oil increase slightly. In addition, the conjunction formula was used to predict sulfur distribution of light oil by the other hydrogenated residual oil feedstock and the calculated sulfur distribution of light oil was in good agreement with the actual data; all the predicted relative errors were less than 5% and the mean relative error was 2.98%. The results showed that the established conjunction formula possessed good predictive features and reliability.  相似文献   

20.
The effect of adding Ti (4.5 wt%) and P (∼1.0 wt%) by several routes to a NiMo/ab Al2O3 catalyst on the hydrodesulfurization (HDS), hydrodenitrogenation (HDN), hydrodemetallization (HDM), and hydrodeasphaltenization (HDAs) of heavy Maya crude was investigated. The results show that not all the catalyst functionalities respond equally well to the addition of Ti and P to the catalyst formulation. There is not a single catalyst formulation that can achieve optimum performance in all the catalyst functionalities. For HDS, Ti incorporation increases activity but the route by which P is added afterwards can improve or be detrimental to HDS activity. For HDN, the incorporation of P to the catalyst can lead to significant improvements in catalytic activity and catalyst stability. Ti increases HDM activity but the addition of P to the catalyst is detrimental to this functionality. For the elimination of asphaltenes, the catalyst supported on pure alumina is the best. So for HDAs, no benefit is obtained by the addition of Ti or P to the catalyst. Textural properties are important and HDM and HDAs increase with catalyst average pore diameter. Hydrodemetallization activity increases with the acidity of the catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号