首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Controlled degradation and transiency of materials is of significant importance in the design and fabrication of degradable and transient biomedical and electronic devices and platforms. Here, the synthesis of programmable biodegradable and transient insulating polymer films is reported, which have sufficient physical and chemical properties to be used as substrates for the construction of transient electronics. The composite structure can be used as a means to control the dissolution and transiency rate of the polymer composite film. Experimental and computational studies demonstrate that the addition of gelatin or sucrose to a PVA polymer matrix can be used as a means to program and either slow or enhance the transiency of the composite. The dissolution of the polymer composites are fitted with inverse exponential functions of different time constants; the lower time constants are an indication of faster transiency of the polymer composite. The addition of gelatin results in larger time constants, whereas the addition of sucrose generally results in smaller time constants.  相似文献   

2.
Inspired by nature, various self-healing materials that can recover their physical properties after external damage have been developed. Recently, self-healing materials have been widely used in electronic devices for improving durability and protecting the devices from failure during operation. Moreover, self-healing materials can integrate many other intriguing properties of biological systems, such as stretchability, mechanical toughness, adhesion, and structural coloration, providing additional fascinating experiences. All of these inspirations have attracted extensive research on bioinspired self-healing soft electronics. This review presents a detailed discussion on bioinspired self-healing soft electronics. Firstly, two main healing mechanisms are introduced. Then, four categories of self-healing materials in soft electronics, including insulators, semiconductors, electronic conductors, and ionic conductors, are reviewed, and their functions, working principles, and applications are summarized. Finally, human-inspired self-healing materials and animal-inspired self-healing materials as well as their applications, such as organic field-effect transistors (OFETs), pressure sensors, strain sensors, chemical sensors, triboelectric nanogenerators (TENGs), and soft actuators, are introduced. This cutting-edge and promising field is believed to stimulate more excellent cross-discipline works in material science, flexible electronics, and novel sensors, accelerating the development of applications in human motion monitoring, environmental sensing, information transmission, etc.  相似文献   

3.
Triboelectric nanogenerators (TENGs) are a promising technology to convert mechanical energy to electrical energy based on coupled triboelectrification and electrostatic induction. With the rapid development of functional materials and manufacturing techniques, wearable and implantable TENGs have evolved into playing important roles in clinic and daily life from in vitro to in vivo. These flexible and light membrane‐like devices have the potential to be a new power supply or sensor element, to meet the special requirements for portable electronics, promoting innovation in electronic devices. In this review, the recent advances in wearable and implantable TENGs as sustainable power sources or self‐powered sensors are reviewed. In addition, the remaining challenges and future possible improvements of wearable and implantable TENG‐based self‐powered systems are discussed.  相似文献   

4.
Standard fabrication of soft electronic devices with both high controllability and yield is highly desirable but remains a challenge due to the modulus mismatch of component materials through a one-step process. Here, by mimicking the freeze-section process of multicomponent biological tissues containing low-modulus muscles and high-modulus bones, for the first time, a hydrogel cryo-microtomy method to continuously making soft electronic devices based on a sol-solid-gel transition mechanism is presented. Polyvinyl alcohol (PVA) electrolyte and aligned nitrogen-doped multi-walled carbon nanotube (N-MWCNT) array electrode are demonstrated as low- and high-modulus components to fabricate soft supercapacitors with high performances. Stable interfaces form between frozen PVA electrolyte and N-MWCNT electrodes with matched moduli at subzero temperature and are well maintained during cryo-microtomy process. The resulting soft supercapacitors realize controllable patterns, tunable thicknesses from 0.5 to 600 μm, high yields such as 20 devices per minute even at lab scale, and high reproducibility with over 75% devices in 15% performance fluctuation. This cryo-microtomy method is further generalized to fabricate other soft devices such as sensors with high sensing properties.  相似文献   

5.
Wearable electronics have become an important part of daily lives. However, its rapid development results in the problem of electronic waste (e-waste). Consequently, recyclable materials suitable for wearable electronics are highly sought after. In this study, a conductive recyclable composite (PFBC) is designed based on a dynamic covalently cross-linked elastomer and hierarchical hybrid nanofillers. The PFBC shows excellent wide-ranging properties including processability, elasticity, conductivity, and stability, which are superior to previous materials used for recyclable electronics, and exhibits outstanding mechanical properties and environmental tolerance including high temperature, high humidity, brine, and ethanol owing to its covalent cross-linking. Reversible dissociation of Diels–Alder networks allows for convenient processing and recycling. After three recycles, the toughness of the PFBC remained at 10.1 MJ m−3, which is conspicuous among the reported recyclable electronic materials. Three types of PFBC-based wearable electronics including a triboelectric nanogenerator, a capacitive pressure sensor, and a flexible keyboard, are successfully 3D printed with excellent performance. The PFBC possessed both recyclability and degradability, the combination of which provides a new way to reduce e-waste. This is the first work to recycle electronics using direct 3D printing and presents promising new design principles and materials for wearable electronics.  相似文献   

6.
Green electronics made from degradable materials have recently attracted special attention, because electronic waste (e-waste) represents a serious threat to the environment and to human health worldwide. Among the novel materials used for sustainable technologies, nanocelluloses containing at least 1D in the nanoscale range (1–100 nm) have been widely exploited for various industrial applications owing to their inherent properties, such as biodegradability, mechanical strength, thermal stability, and optical transparency. This review highlights recent advances in research on the development of patterns for conductive material on nanocellulose substrates for use in high-performance green electronics. The advantages of nanocellulose substrates compared to conventional paper substrates for advanced green electronics are discussed. Importantly, this review emphasizes various fabrication strategies for producing conductive patterns on different types of nanocellulose-based substrates, such as cellulose nanofiber (CNF), (2,2,6,6-tetramethylpiperidin-1-yl)oxyl(TEMPO)-oxidized CNF, regenerated cellulose, and bacterial cellulose. In the latter part of this review, emerging engineering applications for green electronics such as circuits, transistors/antennas, sensors, energy storage systems, and electrochromic devices are further discussed.  相似文献   

7.
The progressive development of flexible transparent portable electronic devices is in urgent need of matching power sources. Flexible transparent supercapacitors (FTSCs) are the core resources due to their high optical transmittance, endurable mechanical flexibility, excellent electrochemical performance, and facilely accessible device configuration. This review organizes the rational design of nanostructured electrode materials toward FTSCs. First, the structure, mechanism, and property of FTSCs are introduced. Then, the design principles of diverse electrode materials are discussed to achieve flexible transparent conductive electrodes (FTCEs) with different figure of merits (both electrical FoMe and capacitive FoMc), mechanical strength, and environmental stability. Following the achievements in multifunctional FTSCs focusing on film-supercapacitors, micro-supercapacitors, electrochromic supercapacitors, photo-supercapacitors, and battery-like supercapacitors are also highlighted. Finally, the current challenges and future perspectives on viable materials in the construction of FTSCs to power portable electronics are outlined.  相似文献   

8.
Research on transient wearable electronics with stretchable components is of increasing interest because of their abilities to conform seamlessly to human tissues and, more interestingly, disappear from the environment when disposed. To wear them comfortably, their component materials must be pliable, tough, stretchable, biocompatible, and disintegrable. However, most biodegradable materials are not stretchable or tough, limiting their use in transient wearable electronics. Herein, these challenges are addressed by demonstrating a biodegradable nanofiber (NF)-reinforced water-borne polyurethane (NFR-WPU) with stretchability, toughness, and partial biodegradability by embedding biodegradable composite NFs of poly(glycerol sebacate): poly(vinyl alcohol) (PGS:PVA) into the WPU matrix, thus rendering its properties tunable. An optimal loading amount of NFs into the NFR-WPU significantly enhanced the toughness by 19 times while maintaining the Young's modulus as low as 3.3 MPa. Furthermore, the NFR-WPU substrate has very high fracture toughness and shows excellent biocompatibility. Moreover, the NFR-WPU has a disintegration rate nine times greater than that of pristine WPU. Finally, disintegrable and stretchable triboelectric and capacitive touch sensors on the NFR-WPU are fabricated and demonstrated for potential use in transient wearable electronics.  相似文献   

9.
Intelligent energy generation from ambient environment by various nanogenerators is desirable to realize self‐powered operation of electronics. By integrating two or more kinds of nanogenerators, a hybridized nanogenerator provides a possible solution to largely increase the total electric power, and thus has been considered as one of the most significant energy‐related technologies. Here, emerging advancements in hybridized nanogenerators are summarized in terms of their structures, principles, and potential applications. In particular, one‐structure‐based coupled nanogenerators based on multifunctional energy‐scavenging materials and the interface regulation of solar cells by inner nanogenerators are discussed. For potential applications in wearable electronics, the new progress on flexible hybridized nanogenerators is presented on the basis of stretchable and mechanically durable materials, substrates, and electrodes. With the advances highlighted here and the ongoing research efforts, the continuous breakthrough in hybridized nanogenerators for multiple energy scavenging and their extensive applications is foreseeable in the future.  相似文献   

10.
The interfacing of soft and hard electronics is a key challenge for flexible hybrid electronics. Currently, a multisubstrate approach is employed, where soft and hard devices are fabricated or assembled on separate substrates, and bonded or interfaced using connectors; this hinders the flexibility of the device and is prone to interconnect issues. Here, a single substrate interfacing approach is reported, where soft devices, i.e., sensors, are directly printed on Kapton polyimide substrates that are widely used for fabricating flexible printed circuit boards (FPCBs). Utilizing a process flow compatible with the FPCB assembly process, a wearable sensor patch is fabricated composed of inkjet‐printed gold electrocardiography (ECG) electrodes and a stencil‐printed nickel oxide thermistor. The ECG electrodes provide 1 mVpp ECG signal at 4.7 cm electrode spacing and the thermistor is highly sensitive at normal body temperatures, and demonstrates temperature coefficient, α ≈ –5.84% K–1 and material constant, β ≈ 4330 K. This sensor platform can be extended to a more sophisticated multisensor platform where sensors fabricated using solution processable functional inks can be interfaced to hard electronics for health and performance monitoring, as well as internet of things applications.  相似文献   

11.
3D conformable electronic devices on freeform surfaces show superior performance to the conventional, planar ones. They represent a trend of future electronics and have witnessed exponential growth in various applications. However, their potential is largely limited by a lack of sophisticated fabrication techniques. To tackle this challenge, a new direct freeform laser (DFL) fabrication method enabled by a 5-axis laser processing platform for directly fabricating 3D conformable electronics on targeted arbitrary surfaces is reported. Accordingly, representative laser-induced graphene (LIG), metals, and metal oxides are successfully fabricated as high-performance sensing and electrode materials from different material precursors on various types of substrates for applications in temperature/light/gas sensing, energy storage, and printed circuit board for circuit. Last but not the least, to demonstrate an application in smart homes, LIG-based conformable strain sensors are fabricated and distributed in designated locations of an artificial tree. The distributed sensors have the capability of monitoring the wind speed and direction with the assistance of well-trained machine-learning models. This novel process will pave a new and general route to fabricating 3D conformable electronic devices, thus creating new opportunities in robotics, biomedical sensing, structural health, environmental monitoring, and Internet of Things applications.  相似文献   

12.
To develop high‐capacitance flexible solid‐state supercapacitors and explore its application in self‐powered electronics is one of ongoing research topics. In this study, self‐stacked solvated graphene (SSG) films are reported that have been prepared by a facile vacuum filtration method as the free‐standing electrode for flexible solid‐state supercapacitors. The highly hydrated SSG films have low mass loading, high flexibility, and high electrical conductivity. The flexible solid‐state supercapacitors based on SSG films exhibit excellent capacitive characteristics with a high gravimetric specific capacitance of 245 F g?1 and good cycling stability of 10 000 cycles. Furthermore, the flexible solid‐state supercapacitors are integrated with high performance perovskite hybrid solar cells (pero‐HSCs) to build self‐powered electronics. It is found that the solid‐state supercapacitors can be charged by pero‐HSCs and discharged from 0.75 V. These results demonstrate that the self‐powered electronics by integration of the flexible solid‐state supercapacitors with pero‐HSCs have great potential applications in storage of solar energy and in flexible electronics, such as portable and wearable personal devices.  相似文献   

13.
The growing usage and consumption of electronics-integrated items into the daily routine has raised concerns on the disposal and proper recycling of these components. Here, a fully sustainable and green technology for the fabrication of different electronics on fruit-waste derived paper substrate, is reported. The process relies on the carbonization of the topmost surface of different cellulose-based substrates, derived from apple-, kiwi-, and grape-based processes, by a CO2 laser. By optimizing the lasing parameters, electronic devices, such as capacitors, biosensors, and electrodes for food monitoring as well as heart and respiration activity analysis, are realized. Biocompatibility tests on fruit-based cellulose reveal no shortcoming for on-skin applications. The employment of such natural and plastic-free substrate allows twofold strategies for electronics recycling. As a first approach, device dissolution is achieved at room temperature within 40 days, revealing transient behavior in natural solution and leaving no harmful residuals. Alternatively, the cellulose-based electronics is reintroduced in nature, as possible support for plant seeding and growth or even soil amendment. These results demonstrate the realization of green, low-cost and circular electronics, with possible applications in smart agriculture and the Internet-of-Thing, with no waste creation and zero or even positive impact on the ecosystem.  相似文献   

14.
The prevalence of the Internet of Things (IoT) and wearable electronics create an unprecedented demand for new power sources which are low cost, high performance, and flexible in many application settings. In this paper, a strategy for the scalable fabrication of high‐performance, all‐solid‐state supercapacitors (SCs) is demonstrated using conventional paper and an inkjet printer. Emerging printed electronics technology and low‐cost chemical engraving methods are bridged for the first time to construct CuxO nanosheets, in situ, on the 3D metallized fiber structures. Benefitting from both the “2D Materials on 3D Structures” design and the binder‐free nature of the fabricated electrodes, substantial improvements to electrical conductivity, aerial capacitance, and electrochemical performance of the resulting SCs are observed. With the proposed strategy, the fabricated SCs can be seamlessly integrated into any printed circuit, sensors, or artwork; the properties of these SCs can be easily tuned by simple pattern design, fulfilling the increasing demand of highly customized power systems in the IoT and flexible/wearable electronics industries.  相似文献   

15.
Transient electronics, arising electronic devices with dissolvable or degradable features on demand, is still at an early stage of development due to the limited choices of materials and strategies. Herein, a facile fabrication method for transient circuits by the combination of room‐temperature liquid metals (RTLMs) as the electronic circuit and water‐soluble poly(vinyl alcohol) (PVA) as the packaging material is reported. The as‐made transient circuits exhibit remarkable durability and stable electric performance upon bending and twisting, while possessing short transience times, owing to the excellent solubility of PVA substrates and the intrinsic flexibility of RTLM patterns. Moreover, the RTLM‐based transient circuit shows an extremely high recycling efficiency, up to 96% of the employed RTLM can be recovered. As such, the economic and environmental viability of transient electronics increases substantially. To validate this concept, the surface patterning of RTLMs with complicated shapes is demonstrated, and a transient antenna is subsequently applied for passive near‐field communication tag and a transient capacitive touch sensor. The application of the RTLM‐based transient circuit for sequentially turning off an array of light‐emitting‐diode lamps is also demonstrated. The present RTLM‐based PVA‐encapsulated circuits substantially expand the scope of transient electronics toward flexible and recyclable transient systems.  相似文献   

16.
Printed and flexible electronics are definitely promising cutting-edge electronic technologies of the future.They offer a wide-variety of applications such as flexible circuits,flexible displays,flexible solar cells,skinlike pressure sensors,and radio frequency identification tags in our daily life.As the most-fundamental component of electronics,electrodes are made of conductive materials that play a key role in flexible and printed electronic devices.In this review,various inorganic conductive materials and strategies for obtaining highly conductive and uniform electrodes are demonstrated.Applications of printed electrodes fabricated via these strategies are also described.Nevertheless,there are a number of challenges yet to overcome to optimize the processing and performance of printed electrodes.  相似文献   

17.
Flexible energy devices are the building blocks for next-generation wearable electronics.Flexible energy devices are expected to have multiple functions,such as energy conver-sion from light to electricity and vice versa,energy genera-tion from triboelectric,energy storage and so on.These func-tions can be efficiently realized by solar cells,light-emitting di-odes (LEDs),triboelectric nanogenerators (TENG),batteries and supercapacitors,etc.The flexible energy devices can be in-tegrated into flexible,wearable,and/or portable platforms to enable wide application prospects in the fields of informa-tion,energy,medical care,national defense,etc.However,flex-ible energy devices face more challenges when compared to their rigid counterparts,which requires more breakthroughs and research efforts on fabrication techniques,materials innov-ation,novel structure designs,and deep physical understand-ings.  相似文献   

18.
Implantable and ingestible biomedical electronic devices can be useful tools for detecting physiological and pathophysiological signals, and providing treatments that cannot be done externally. However, one major challenge in the development of these devices is the limited lifetime of their power sources. The state-of-the-art of powering technologies for implantable and ingestible electronics is reviewed here. The structure and power requirements of implantable and ingestible biomedical electronics are described to guide the development of powering technologies. These powering technologies include novel batteries that can be used as both power sources and for energy storage, devices that can harvest energy from the human body, and devices that can receive and operate with energy transferred from exogenous sources. Furthermore, potential sources of mechanical, chemical, and electromagnetic energy present around common target locations of implantable and ingestible electronics are thoroughly analyzed; energy harvesting and transfer methods befitting each energy source are also discussed. Developing power sources that are safe, compact, and have high volumetric energy densities is essential for realizing long-term in-body biomedical electronics and for enabling a new era of personalized healthcare.  相似文献   

19.
In the past few years, nanocellulose, as a new-emerging colloid, has developed into a large family and gained increasing attention owing to its favorable properties. It represents a ubiquitous feature in electronics as different components according to principles extend across energy, lighting management, and transistors and biosensors to information technologies. Within these decades, there are a lot of remarkable phenomena, effects, and performances relevant to a few additional attributes of nanocellulose, making the electronics perform better and better. Toward the rapid nanotechnology development and the need of the society, characterizing this important nanomaterial and making more and more new electronics have become important things to be done. This review consolidates the contribution of nanocellulose to nano-related electronics, summarizes these methods to utilize nanocellulose as any component in devices, and points out the attributes of the nanocellulose. In the devices, the recent advances into solid-state electronics, optoelectronic devices, and flexible/wearable electronics are categorized. The intrinsic electrical, dielectric and electronic structures, and properties of nanocellulose related to the device performances are particularly summarized and analyzed, which is believed beneficial in providing a judgment criterion for devices in the future.  相似文献   

20.
Fast, simple, cost‐efficient, eco‐friendly, and design‐flexible patterning of high‐quality graphene from abundant natural resources is of immense interest for the mass production of next‐generation graphene‐based green electronics. Most electronic components have been manufactured by repetitive photolithography processes involving a large number of masks, photoresists, and toxic etchants; resulting in slow, complex, expensive, less‐flexible, and often corrosive electronics manufacturing processes to date. Here, a one‐step formation and patterning of highly conductive graphene on natural woods and leaves by programmable irradiation of ultrafast high‐photon‐energy laser pulses in ambient air is presented. Direct photoconversion of woods and leaves into graphene is realized at a low temperature by intense ultrafast light pulses with controlled fluences. Green graphene electronic components of electrical interconnects, flexible temperature sensors, and energy‐storing pseudocapacitors are fabricated from woods and leaves. This direct graphene synthesis is a breakthrough toward biocompatible, biodegradable, and eco‐friendlily manufactured green electronics for the sustainable earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号