首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
通过宏观拍照和扫描电镜对A7N01高强铝合金T型焊接接头的疲劳断口进行了研究,揭示了该铝合金疲劳裂纹萌生与扩展的特征.铝合金的疲劳断口可明显划分为疲劳裂纹源区、裂纹稳定扩展区和瞬断区3大区域.疲劳裂纹从T型焊接接头的焊趾处萌生并向接头中心线扩展,疲劳裂纹扩展区可以观察到疲劳破坏的一些典型特征,瞬断区的断口形貌与拉伸断裂相似,形成不平坦的粗糙表面.  相似文献   

2.
对TRIP钢板进行了一系列高周疲劳试验,对800MPa强度级别的TRIP钢的疲劳极限、疲劳寿命系数进行了研究,并与同强度级别的DP钢板进行了对比。分析了TRIP钢疲劳断口的显微组织以及TRIP效应对TRIP钢疲劳性能的影响。结果表明:TRIP效应对钢的疲劳抗力有所贡献,在循环基数为107次下,TRIP钢的疲劳极限值明显高于DP钢,拥有更高的抗疲劳性能,TRIP钢疲劳裂纹源与疲劳区有明显韧性断裂特征。  相似文献   

3.
机身壁板LBW结构DFR值试验测定及理论计算   总被引:1,自引:0,他引:1  
飞机机身壁板是疲劳的关键位置,空客公司首先在飞机机身壁板采用激光焊接(LBW)结构代替传统铆接结构.为评价该激光焊接结构的疲劳性能,结合试验测定和统计学理论计算两种方法,对两组新型铝锂合金2060-T3激光焊接焊后热处理(PWHT,即焊后固溶+时效热处理和焊后时效热处理)结构进行疲劳试验、断口分析及细节疲劳额定强度(DFR值)分析,分别计算了试验测定DFR值和理论DFR值.分析结果表明,试验测定焊后固溶+时效热处理激光焊接结构的DFR值为118.0 MPa,焊后时效热处理的DFR值为113. 7 MPa,理论DFR值分别为115. 8 MPa (误差为1. 86%)和112. 2 MPa (误差为1.32%);两组结构均在焊趾处产生裂纹源,裂纹沿板材厚度方向进行扩展,裂纹扩展区均表现为脆性解理河流花样,不同的是前者瞬断区为微孔聚集型断裂,断口存在大量微小韧窝,后者瞬断区为沿晶断裂,断口存在大量晶粒;采用统计学理论计算,可以较好地还原威布尔分布的形状参数,验证了统计学理论分析方法的工程适用性,为机身壁板LBW结构的DFR值测定提供了参考依据.  相似文献   

4.
飞机机身壁板是疲劳的关键位置, 空客公司首先在飞机机身壁板采用激光焊接(LBW)结构代替传统铆接结构.为评价该激光焊接结构的疲劳性能, 结合试验测定和统计学理论计算两种方法, 对两组新型铝锂合金2060-T3激光焊接焊后热处理(PWHT, 即焊后固溶+时效热处理和焊后时效热处理)结构进行疲劳试验、断口分析及细节疲劳额定强度(DFR值)分析, 分别计算了试验测定DFR值和理论DFR值.分析结果表明, 试验测定焊后固溶+时效热处理激光焊接结构的DFR值为118.0 MPa, 焊后时效热处理的DFR值为113.7 MPa, 理论DFR值分别为115.8 MPa(误差为1.86%)和112.2 MPa(误差为1.32%); 两组结构均在焊趾处产生裂纹源, 裂纹沿板材厚度方向进行扩展, 裂纹扩展区均表现为脆性解理河流花样, 不同的是前者瞬断区为微孔聚集型断裂, 断口存在大量微小韧窝, 后者瞬断区为沿晶断裂, 断口存在大量晶粒; 采用统计学理论计算, 可以较好地还原威布尔分布的形状参数, 验证了统计学理论分析方法的工程适用性, 为机身壁板LBW结构的DFR值测定提供了参考依据.  相似文献   

5.
对84mm轨道客车用6082-T6铝合金搅拌摩擦焊接头疲劳性能以及断口特征进行试验研究。结果表明,搅拌摩擦焊接头疲劳循环次数随施加载荷减小而增加,当N=107时,疲劳极限值为110MPa,且疲劳断裂主要发生在前进侧热机械影响区。在预制缺口、相同载荷应力条件下,焊核区疲劳循环次数达7.4万次,断口表现为沿晶断裂,裂纹由疲劳源向四周扩展,晶粒细化提高了焊核区疲劳寿命;而前进侧热机械影响区疲劳循环次数最少为2.5万次,裂纹沿晶界向焊核区方向扩展,扩展方式为沿晶和穿晶混合断裂,晶粒发生弯曲变形以及第二相粒子剥离是接头ATMAZ疲劳性能下降的主要原因。  相似文献   

6.
调质状态下30CrMnSiA钢的激光焊接   总被引:2,自引:0,他引:2  
探讨了调质状态下30CrMnSiA钢的激光焊接性、焊缝成形及焊后残余变形;研究了调质状态下激光焊接30CrMnSiA钢时焊缝及热影响区的金相组织;提出了调质状态下30CrMnSiA钢在焊深≥1.5mm时的激光焊接规范参数。结果表明,采用激光焊接调质状态下的30CrMnSiA钢,易获得质量优良的焊缝,不会出现常见的焊接裂纹和明显的热影响区性能变化;工件加工误差对焊缝成形的影响可通过一定的措施加以改善,表面黑化处理对焊缝成形的影响机理有待进一步研究。  相似文献   

7.
为了研究超高强钢焊点的疲劳性能,以22Mn B5点焊结构为研究对象,采用中频伺服点焊设备对2 mm厚试件进行了焊接.利用高频疲劳试验机、激光补焊设备和光学显微镜,研究了不同焊接工艺参数下试件的S-N曲线.结果表明,焊接时间与电流参数会对高应力等级焊点的疲劳寿命产生明显影响,而其对低应力区焊点的疲劳寿命影响较小.合理的工艺参数可以有效提高焊点的疲劳寿命.利用激光工艺对焊点的微小圆周薄弱区进行补焊后,可以有效增强焊点的结构强度.  相似文献   

8.
通过CO2激光器对试件进行激光表面热处理,对比处理前后试样的疲劳寿命,找出了最优激光工艺参数,并对其进行疲劳断口及表面微观结构分析,探求其微观机理.研究结果表明:激光表面热处理时激光扫描速率、功率密度对处理效果有显著影响;对于25μm厚工业纯Cu薄膜材料,激光功率密度为208 kW/cm2,扫描速率为25mm/s时,激光表面处理效果最佳,试件的疲劳寿命提高了2~3倍;在扫描电镜观测下发现,激光表面处理后试件表面形成1层淬硬区并产生残余压应力,使试件的疲劳强度明显增加,且激光表面处理的试件裂纹萌生后扩展至断裂的过程较为缓慢,断口出现疲劳条纹.  相似文献   

9.
试验对比分析了2次、4次以及6次返修焊对S355J2W+N焊接接头疲劳性能的影响。结果表明,焊接返修次数增加会使接头疲劳寿命降低,6次返修的接头中值疲劳寿命与未经返修的接头相比降低43%。疲劳试样断裂位置分为在焊缝处断裂和在母材处断裂,断口均明显分成裂纹源区、裂纹扩展区和最后断裂区3部分。  相似文献   

10.
对20mm厚10CrNi3MoV钢用机器人进行多层单道熔化极活性气体(Metal Active Gas,MAG)保护焊焊接,采用光学显微镜(Optical Microsope,OM)观察焊接接头组织分布,采用硬度计和疲劳试验机分析焊接接头的硬度和疲劳性能.结果表明:焊接接头热影响区(Heat Affected Zone,HAZ)宽度小,其硬度比母材硬度高,HAZ没有造成焊接接头强度软化.二次热循环作用使得焊缝粗晶区晶粒显著细化,焊缝区维氏硬度(HV)谷值约为170,母材硬度约为250.焊接接头应力在屈服点80%时低周疲劳试验循环10 000次没有断裂,而在屈服点90%时循环3 254次后断裂,并且断裂发生在焊趾处.  相似文献   

11.
为了解决铝合金对接接头光纤激光焊的质量问题,采用热弹塑性有限元技术模拟焊接过程中的试样温度和应力变化,研究试样瞬态温度场和应力场变化规律及其分布特征,探讨激光功率和焊接速度对焊接质量的影响规律。实验采用的激光焊接系统,可实现快速预热并在充满氮气的密封腔中完成焊接过程。实验选取数值模拟确定的激光功率和焊接速度值,焊接完成2 mm厚6061-T6铝合金板对接接头。光纤激光焊接头的上下表面焊缝形貌平整连续,拉伸疲劳断口位于焊缝一侧的热影响区(HAZ)。模拟结果为光纤激光焊的机理研究和优化光纤激光焊接工艺提供了支持。  相似文献   

12.
GH80A镍合金电子束焊接接头旋转弯曲高周疲劳行为研究   总被引:1,自引:0,他引:1  
随着镍合金电子束焊接在工业中的大量应用,尤其是在航空发动机和燃气轮机等关键长寿命服役设备中的使用,有必要对镍合金电子束焊接接头的高周疲劳属性和断裂机理进行系统的分析研究。本文利用旋转弯曲高周疲劳试验机进行疲劳试验,获得了母材和焊接接头的应力-寿命(S-N)曲线和疲劳断口,同时利用扫描电镜(Scanning Electron Microscope,SEM)对疲劳断口进行了微观特征分析,确定了母材和焊接接头在不同应力幅下的疲劳裂纹萌生区和扩展区,分析了裂纹萌生区位置与应力幅的相互关系。最后,利用有限元分析了焊接接头热影响区微裂纹位置与大小对材料疲劳性能的影响。从现有的试验和模拟结果可以得到:1)母材和电子束焊接接头应力-寿命(S-N)曲线分布趋势一致,但焊接接头疲劳强度要低于母材,在靠近107周次时,两者疲劳强度差距最小;2)在高应力幅(低周疲劳寿命阶段)母材和焊接接头的疲劳裂纹均起源于试件表面并且都是多点萌生断裂,焊接接头疲劳断口位置位于焊接熔合区或热影响区;3)在低应力幅(高周疲劳寿命阶段)疲劳裂纹在试件次表面萌生,焊接接头疲劳断口位于热影响区或焊接母材靠近热影响区处;4) 通过有限元模拟发现微裂纹的存在有利于裂纹的扩展。在拉应力作用下,横向微裂纹更优于纵向裂纹沿着应力方向进行裂纹扩展;随着微裂纹尺寸增大,微裂纹间更易于相互贯通,形成更长的裂纹,从而降低了材料的疲劳性能。综上可知,电子束焊接仅仅影响材料的疲劳强度。疲劳断裂机理和母材一致都为穿晶解理断裂,疲劳裂纹萌生区域位置也和母材一样都受应力幅的直接影响。  相似文献   

13.
采用轴向应变控制方法,在MTS809拉扭复合疲劳试验机上开展了HRB400EⅢ级钢筋母材及焊接接头的低周疲劳试验,获得了母材及焊接接头的低周疲劳性能,如循环应力响应特征、循环应力-应变关系以及寿命预测公式等.通过断口电镜扫描发现,HRB400EⅢ级钢筋焊接接头的裂纹萌生于试件表面,且存在多处裂纹源.研究结果表明,焊接接头与母材的低周疲劳寿命及微观断裂机理方面均存在明显差异,并从力学性能变化的角度对引起差异的原因进行了解释.  相似文献   

14.
采用固体Nd:YAG激光器焊接拉伸强度级别为650MPa、厚度为1.2mm的相变诱发塑性钢(TRIP)薄板,利用光学显微镜和电子显微镜研究了其不同焊接速度下对接焊缝的形貌和组织特点。测试了接头的硬度和抗拉强度,借助杯凸试验对比研究了激光焊接接头和母材的成形能力,并分析了焊接速度对接头组织、性能的影响。研究表明:TRIP钢的相组成主要是大量铁素体、贝氏体和少量的残余奥氏体;激光焊缝金属则主要由马氏体构成。焊缝金属或焊接热影响区的近缝区具有最高的硬度。焊缝金属的屈服强度和抗拉强度在垂直于焊缝方向与母材基本相同,但在平行于焊缝方向明显高于母材。与母材相比,激光焊接TRIP钢薄板的冲压成型能力明显下降。  相似文献   

15.
采用TIG焊对5 mm厚AZ31B挤压镁合金板材进行了焊接试验。采用万能拉伸试验机、金相显微镜、扫描电子显微镜和显微硬度仪等分析测试手段对焊接接头的组织、力学性能以及断口形貌等进行了分析。探讨了焊接电流对焊接接头的组织及力学性能的影响,揭示了不同焊接电流下焊接接头的断裂机制。结果表明,采用TIG焊焊接5 mm厚AZ31B镁合金板时,开X型坡口,采用双面焊接双面成型工艺,在130~145 A焊接电流及合适焊接速度条件下,能得到表面成型良好的焊接接头。当正反面焊接电流均为145 A时,AZ31B镁合金板焊接接头的抗拉强度达到最大值248.6 MPa,约为母材强度的84.0%。AZ31B镁合金板焊缝区显微硬度比母材区稍有所下降,热影响区显微硬度下降比较严重。当焊接电流为145 A时,AZ31B镁合金板焊接拉伸断口有大量韧窝,属韧性断裂。  相似文献   

16.
对航空发动机涡轮盘的典型材料FGH96粉末高温合金不同保载时间下的疲劳-蠕变变形特性及微观损伤机理进行了试验研究。开展了550℃下不同保载时间的低周疲劳-蠕变试验,讨论了保载时间对FGH96合金应力-应变曲线、循环应变响应、疲劳-蠕变寿命及损伤机理的影响。结果表明:保载时间对FGH96合金疲劳-蠕变变形特性有显著影响,随着保载时间的增加,非弹性应变迟滞能增大,稳态滞回曲线发生右移,包络应变及包络应变率增加,疲劳-蠕变寿命先呈指数减小后趋于平稳,蠕变损伤逐渐起主导作用。断口分析表明:保载时间的引入使得断面呈现出多裂纹源特征,断裂模式由穿晶断裂向穿晶-沿晶混合断裂转变,裂纹扩展区存在滑移带及少量韧窝,瞬断区韧窝特征明显。  相似文献   

17.
采用光学显微镜、扫描电子显微镜、疲劳试验机、显微硬度计等对AA6082铝合金焊接接头的微观组织、显微硬度和疲劳断口特征进行研究.结果表明:焊缝主要为树状晶的铸态组织,熔合区为柱状晶,母材显微组织中α(Al)固溶体基体上均匀分布着强化相Mg_2Si.接头热影响区宽度达到14 mm,存在软化区.对疲劳断口进行微观和宏观分析发现,AA6082铝合金熔化极惰性气体保护(MIG)焊接接头的断口具有解理断裂的特征,同时也有少量的韧性断裂特征,断口中存在解理台阶、韧窝和大量长短不等的二次裂纹.  相似文献   

18.
为了探明电化学修复对钢筋疲劳性能的影响,开展电化学除氯和双向电迁处理后钢筋的轴向拉伸疲劳试验. 基于断裂力学原理及断口微观形貌分析,揭示电化学修复技术引起钢筋疲劳性能变化的机理. 结果表明,电化学除氯会引起钢筋疲劳裂纹门槛值的减小及疲劳弹性模量的退化,宏观表现为钢筋疲劳寿命减小;电化学除氯后钢筋疲劳裂纹起源于钢中白点,裂纹扩展区疲劳辉纹间距增大,瞬断区韧窝变小变浅. 掺入阻锈剂的双向电迁方法对钢筋疲劳性能的负面影响较小,双向电迁修复后钢筋的疲劳断口微观形貌相对于普通钢筋未见明显变化.  相似文献   

19.
对聚乙烯混炼机破断转子进行了断口分析和金相分析,利用瞬断断口计算了工作应力,经过综合分析认为:转子断裂原因为旋转疲劳断裂和应力集中,建议对转子喷涂时使用耐磨金属并在喷涂后进行回火处理。  相似文献   

20.
对轨道车辆车体用新型Al-0.6Mg-0.6Si铝合金型材进行了MIG焊(惰性气体保护金属极电弧焊)试验,利用拉伸试验、光学金相(OM)和扫描电镜(SEM)等方法对焊接接头的成型、气孔缺陷、性能和断口形貌进行了观察和分析.结果表明:Al-0.6Mg-0.6Si铝合金采用70°V型对接形式,使用MIG焊接工艺和表面抛光良好、直径1.2mm的ER5356焊丝,能够获得成型良好的焊接接头.MIG焊接工艺参数为:焊接电流160~180 A,电弧电压18~20V,焊接速度6.0~6.5 mm/s.焊接接头的抗拉强度为266 MPa,断后伸长率为6.1%,断口位于焊缝,断裂形式为韧性断裂,断口呈典型的韧窝结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号