首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blends of low‐density polyethylene (LDPE) and a glass‐filled thermotropic liquid crystalline polymer (LCP‐g) have been prepared by melt mixing techniques. The thermal transitions, dynamic behavior, morphology and crystalline properties of the blends have been measured by DSC, DMTA, SEM and XRD respectively. The crystallinity decreased with increase in LCP‐g content in the blends. At higher levels of LCP‐g, crystal growth is favored in the PE phase. From DSC, it is found that the thermal stability of the blends increased with the LCP‐g content. The variation of storage modulus, loss modulus and stiffness as a function of blend ratio suggested the phase inversion at the 40–50% level of LCP‐g in the blend. SEM studies revealed that with the increase in LCP‐g content, the flow of the matrix was restricted.  相似文献   

2.
Blends of Polyether ether ketone (PEEK) and a thermotropic liquid crystalline Polymer (LCP) based on paraoxy-benzoyl and oxy-biphenylene terepthaloyl units were prepared using a static mixer attached to a single screw extruder at 420°C. Rheological studies indicated an increase in the viscosity of the blends upon the addition of LCP. Thermal studies on these blends demonstrated their poor thermal stability compared to the parent materials. The mechanical properties indicated improvement in Young's tensile and flexural modulus but no improvement in the break strength with the addition of the LCP. Morphological studies indicated the formation of ellipsoids of LCP at low LCP concentration in the matrix of PEEK, with extended ellipsoids being observable at 25 percent LCP composition. Phase inversion was noticeable at higher LCP content blends with the formation of PEEK fibrils in the matrix of the LCP. Dynamic studies on these blends showed an increase in the storage modulus with the addition of LCP.  相似文献   

3.
Blends of a poly(ethylene 2,6-naphthalate) (PEN) and a liquid crystalline copolyester (LCP), poly(benzoate-naphthoate) were prepared in a twin-screw extruder. Specimens for thermal properties were investigated by means of an instron capillary rheometer (ICR) and scanning electron microscopy (SEM). The blend viscosity showed a minimum at 10 wt% of LCP and increased with increasing LCP content above 10 wt% of LCP. Above 50% of LCP and at higher shear rate, phase inversion occured and the blend morphology was fibrous and similar to pure LCP. The ultimate fibrillar structure of LCP phase appeared to be closely related to the extrusion temperature. By employing a suitable deformation history, the LCP phase may be elongated and oriented such that a microfibrillar morphology can be retained in the solid state. Thermal properties of the LCP/PEN blends were studied using DSC and a Rheovibron viscoelastomer. These blends were shown to be incompatible in the entire range of the LCP content. For the blends, the Tg and Tm were unchanged. The half time of crystallization for the LCP/PEN blends decreased with increasing LCP content. Therefore, the LCP acted as a nucleating agent for the crystallization of PEN. The dimensional and thermal stability of the blends were increased with increasing LCP content. In studies of dynamic mechanical properties, the storage modulus (E′) was improved with increasing LCP content and synergistic effects were observed at 70 wt% of LCP content. The storage modulus for the LCP/PEN 70/30 blend is twice that of PEN matrix and exceeded pure LCP.  相似文献   

4.
聚酯/液晶聚合物共混纤维的热处理   总被引:3,自引:1,他引:2  
采用X射线衍射法、双折射法以及声速法研究了PET及其与液晶聚合物(LCP)的共混初生纤维以及经过热处理后纤维的结晶结构和取向结构,并用应力-应变(S-S)法测定其断裂强度和初始模量。结果表明,LCP的加入使初生纤维取向度和结晶度均下降,而喷头拉伸率增大则使共混初生纤维的结晶度和取向度均提高;由较大喷丝头拉伸率得到的共混纤维经热处理后取向度下降,而结晶度增大;当LCP含量大于或等于10%时,经热处理后共混纤维取向度下降;纤维210℃热处理后的晶粒尺寸明显大于180℃处理的,且前者的纤维各晶面的晶粒尺寸随着LCP加入均有增大;纯PET纤维经热处理后力学性能提高,而PET/LCP共混纤维热处理前后力学性能则呈较复杂的变化。  相似文献   

5.
Blends of poly(ethylene terephthalate-co-p-oxybenzoate) (PET–PHB) with poly(ethylene terephthalate) (PET) have been studied in the form of as-spun and drawn fibers. Mechanical properties of drawn blend fibers (DR-6.0) up to 10 wt % liquid crystalline polymer (LCP) component exhibit significant improvement in modulus and strength. With the addition of 10 wt % LCP content in PET matrix, the modulus increases from 11.78 to 17.72 GPa, and the strength increases from 0.76 to 1.0 GPa in comparison to the PET homopolymer. With further addition of LCP content, the properties drop down. Scanning electron microscopy studies of drawn blend fibers show that up to 10 wt % LCP content the blends contain the LCP domains in the size range of 0.07–0.2 μm and are well distributed in the PET matrix. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Abstract

Blends of ethylene acrylic elastomer (AEM) and thermotropic liquid crystalline polymer (TLCP) have been prepared by melt mixing technique. Processing studies indicated a decrease in the viscosity of the blends with the addition of liquid crystalline polymer (LCP). At lower level of LCP the tensile strength and tear strength increased. However, at higher level of LCP tensile strength values decreased due to insufficient adhesion between two phases. The modulus of the samples increased with the LCP content. The degree of crystallinity increased with increasing LCP content. This improvement in crystallinity is associated with the increase in crystallite size. For the blends, thermal studies indicated, the endothermic signals which were more prominent at all the peak temperatures. The heat of degradation values increased with the LCP content. Scanning electron microscope (SEM) study suggested the fibril formation, which affected the failure mechanism under DMA studies. Storage modulus and loss modulus of the blends increased with increasing LCP content. At above glass transition temperature (Tg) improvement in storage modulus is nearly five times higher than that of the pure AEM.  相似文献   

7.
Ternary in‐situ poly(butylene terephthalate) (PBT)/poly(acrylonitrile‐butadienestyrene) (ABS)/liquid crystalline polymer(LCP) blends were prepared by injection molding. The LCP used was a versatile Vectra A950, and the matrix material was PBT/ABS 60/40 by weight. Maleic anhydride (MA) copolymer and solid epoxy resin (bisphenol type‐A) were used as compatibilizers for these blends. The tensile, dynamic mechanical, impact, morphology and thermal properties of the blends were studied. Tensile tests showed that the tensile stregth of PBT/ABS/LCP blend in the longitudinal direction increased markedly with increasing LCP content. However, it decreased sharply with increasing LCP content up to 5 wt%; thereafter it decreased slowly with increasing LCP content in the transverse direction. The modulus of this blend in the longitudinal direction appeared to increase considerably with increasing LCP content, whereas the incorporation of LCP into PBT/ABS blends had little effect on the modulus in the transverse direction. The impact tests revealed that the Izod impact strength of the blends in longitudinal direction decreased with increasing LCP content up to 10 wt%; thereafter it increased slowly with increasing LCP. Dynamic mechanical analyses (DMA) and thermogravimetric measurements showed that the heat resistance and heat stability of the blends tended to increase with increasing LCP content. SEM observation, DMA, and tensile measurement indicated that the additions of epoxy and MA copolymer to PBT/ABS matrix appeared to enhance the compatibility between PBT/ABS and LCP.  相似文献   

8.
Fibers (strands) with various draw ratios were spun from the liquid crystalline state of a pure aromatic liquid crystalline copoly(ester amide) and the melts of its blend with polycarbonate. Scanning electron microscopy (SEM), wide angle X-ray scattering (WAXS), and differential scanning calorimetry (DSC) were employed to investigate the structure and properties of the resulting fibers. Mechanical properties of the fibers were also evaluated. It was found that both the crystallite size and heat of fusion of the liquid crystalline polymer (LCP) increase steadily with draw ratio. However, the crystal-nematic transition temperature of the LCP is virtually unaffected by drawing. Moreover, heat of fusion of LCP is much smaller than that of isotropic condensation polymers despite the presence of very sharp diffraction peaks in WAXS measurements. These results are ascribed to the (semi)rigid rod nature of the LCP chains and the persistence of an ordered structure in the LCP melt, i.e., entropy effect. It was further observed that tensile modulus and tensile strength along fiber axis rise with draw ratio for the composite fibers. The elastic modulus of the composite fibers were found to be as high as 19 GPa and tensile strength reached 146 MPa with draw ratios below 40 and an LCP content of 30 wt%. Compared with the thermoplastic matrix, the elastic modulus and tensile strength of the in-situ composite have increased by 7.3 times and 1.4 times, respectively, with the addition of only 30 wt% LCP. This improvement in mechanical properties is attributed to fibrillation of the LCP phase in the blend and the increasing orientation of the LCP chains along the fiber axis during drawing.  相似文献   

9.
A thermotropic liquid crystalline polymer (LCP), when added to polystyrene (PS), can function as both a processing aid and a reinforcing filler. Thermal, rheological, and mechanical properties of the pure components and blends containing up to 10 percent LCP are reported. The LCP used is immiscible with PS, and when an extensional component of flow is present during processing, the LCP forms an elongated fibrous phase oriented in the flow direction. This oriented phase lubricates the melt, substantially lowering the viscosity. When the processed blend is cooled, the dispersed fibrous LCP phase is preserved in the solidified material. The LCP microfibers behave like short reinforcing fibers to improve the mechanical properties of the blend; for example, at an LCP concentration of 4.5 percent, the modulus is increased about 40 percent vs. pure PS.  相似文献   

10.
Polymer blends of polyethersulfone (PES) with an all aromatic liquid crystalline co-polyester (LCP) were investigated. In addition, PES oligomers with the reactive functions end groups (?ONa) were added as a third component to the above blends in order to improve their properties. Flexural properties, such as modulus and strength, and dynamic viscoelastic properties, such as dynamic storage elasticity (E′) and loss tangent (tan δ), of the blends were measured. The morphology of blends was characterized using a differential scanning calorimeter (DSC) and a scanning electron microscope (SEM). Of the flexural properties, the modulus of PES increased almost linearly with increasing LCP content. However, strength decreased as LCP content increased to 20 wt%. In contrast, the addition of the PES oligomers had little effect on modulus, but strength was clearly improved. Regarding dynamic viscoelastic properties, the oligomer-containing blends exhibited complex behavior. Regarding morphologies, SEM analysis revealed that the LCP was not fibrous in the core of the blend containing 40 wt% or less, but the addition of the PES oligomers made LCP fibrous even in blends with low LCP content. It was concluded that the PES oligomers with reactive functional groups acted as a compatibilizer in polymer blends of PES/LCP.  相似文献   

11.
The structure and properties of the as-spun fibers of poly(ethylene terephthalate) (PET) blends with a thermotropic liquid crystalline polymer (LCP), Vectra A900, were studied in detail. The DSC results indicate that the LCP component may act as a nucleating agent promoting the crystallization of the PET matrix from the glassy state but which inhibits its crystallization from the melt due to the existence of an LCP supercooled mesophase. The effect of the drawdown ratio on the orientation of the as-spun blend fibers is highly composition-dependent, which is mainly associated with the formation of LCP fibrils during melt spinning. The modulus of the as-spun blend fibers has a significant increase as the content of LCP reaches 10%, while the tensile strength has a slightly decreasing tendency. The mechanical properties of the as-spun blend fibers could be well improved by heat treatment because of a striking increase in the crystallinity of the PET matrix. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 217–224, 1997  相似文献   

12.
Blends based on poly(ether sulfone) (PES) and a semiaromatic liquid crystalline copolyester (R5) were obtained by injection molding across the entire composition range. The blends showed two pure amorphous phases. The fibrillar structure of the skin led to enhancements in the stiffness. The break properties, however, decreased at low LCP contents, due to the expected lack of adhesion between the phases. The increase in the modulus at increasing LCP content led to improvements in tensile strength. The notch sensitivity of PES decreased after the addition of low LCP levels, giving rise to enhancements of almost 600% in the notched impact strength. The unusually enhanced performance of the 20/80 blend, which has been seen previously in another thermoplastic/LCP blend, suggests that the dispersed PES phase in this blend may act as rubber particles do in rubber toughened thermoplastics. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 52–59, 2004  相似文献   

13.
Blends of poly(ethylene terephthalate-Co-p-oxybenzoate), PET/PHB, with poly(ethylene terephthalate), PET, have been studied in the form of as-spun and drawn fibers. DSC melting and crystallization results show that the PET is compatible with LCP and the crystallization of PET decreases by the addition of LCP in the matrix. Upon heating above the crystal melting temperature of PET, the blend shows good dispersion of LCP in the PET matrix. Wide angle X-ray diffraction of drawn blended fibers show the possible formation of LCP oriented domains. The mechanical properties of drawn fiber up to 10 wt% LCP composition exhibit significant improvement in tensile modulus and tensile strength with values of 17.7 GPa and 1.0 GPa, respectively. Values of modulus are compared with prediction from composite theory, assuming the blend system as nematic domains of LCP. dispersed in PET matrix.  相似文献   

14.
The domain morphology and mechanical properties of fibers spun from blends of a thermotropic liquid crystalline polymer, Vectra A-900, and poly(ethylene terephthalate) (PET) have been studied across the entire composition range. The PET phase was removed by etching to reveal fibrillar LCP domains in the blends of all compositions. The 0.5μm fibril appeared to be the basic structural entity of the LCP domains. A primary effect of composition was the change from discontinuous fibrils when the composition was 35 and 60% by weight LCP to continuous fibrils when the composition was 85 and 96% LCP. This transition had major ramifications on the mechanical properties: the modulus increased abruptly between 60 and 85% LCP, and a change in the fracture mode from brittle fracture to a splitting mode was accompanied by an increase in fracture strength. Different models were required to describe the mechanical properties of the discontinuous and continuous fibril morphologies. Analytic models for short aligned fibers of Nielsen, and Kelly and Tyson were applicable when the LCP fibrils were discontinuous, while modulus and strength of blend fibers with continuous LCP fibrils were discribed by the rule of mixtures.  相似文献   

15.
The blend fibrous membranes with the different mass ratio of silk fibroin (SF) powder to polyurethane (PU) were fabricated by electrospinning. The structure, morphology, mechanical properties, and surface wettabilities of the blend fibrous membrane are characterized by field‐emission scanning electron microscope, Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetry, dynamic mechanical thermal analysis, tensile testing, and contact angle measurements. The results show that the SF was uniformly distributed in the blend fibers. The mass ratio of SF to PU played an important role in influencing the structure and morphology of the blend fibers, and the optimum mass ratio was 5/5. With the increase in SF content in fibers, the fraction of SF in the surface of the SF/PU blend fibers and the crystallinity degree of PU increased, and the molecular orientation of PU along the fiber axis took place. The SF content regulated the hydrophilicity property of the membrane. The thermal stability and the dynamic storage modulus of the fibrous membrane decreased, and the phase separation between soft and hard segments of PU increased. Similarly, the stress at peak and Young's modulus of the fibrous membrane decreased gradually; the strain at peak first increased and then decreased. POLYM. ENG. SCI., 52:2025–2032, 2012. © 2012 Society of Plastics Engineers  相似文献   

16.
Blends of a PPO–PS alloy with a liquid crystalline polymer have been studied for their dynamic properties, rheology, mechanical properties, and morphology. This work is an extension of our previous work on PPO/LCP blends. The addition of the LCP to the PPO–PS alloy resulted in a marked reduction in the viscosity of the blends and increased processibility. The dynamic studies showed that the alloy is immiscible and incompatible with the LCP at all concentrations. The tensile properties of the blends showed a drastic increase with the increase in LCP concentration, thus indicating that the LCP acted as a reinforcing agent. The tensile strength, secant modulus, and impact strength of the PPO–PS/LCP blends were significantly higher than that of PPO/LCP blends. Morphology of the injection molded samples of the PPO–PS/LCP blends showed that the in situ formed fibrous LCP phase was preserved in the solidified form. A distinct skin–core morphology was also seen for the blends, particularly with low LCP concentrations. The improvement of the mechanical properties of the blends is attributed to these in situ fibers of LCP embedded in the PPO–PS matrix. The improvement in the properties of PPO–PS/LCP over PPO/LCP is also attributed to the addition of the PS which consolidates the matrix. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
The formation of fibers during blending of a thermotropic liquid crystalline polymer (LCP) with a thermoplastic elastomer (TPE) using shear flow, and the stability of the fibers and the blend morphologies at elevated temperatures were studied. The polymers used were Vectra A900 (LCP) and Kraton G1650 (TPE). Fiber formation in (predominantly) shear flow was studied using a single screw extruder of which the die was removed. Fibers were obtained in blends with 5 vol% LCP at shear rates as low as 6.3 s?1. Conventional extrusion through a die was used for preparing materials for the studies of the thermal stability of blends and isolated fibers–isolated LCP-fibers surrounded by a TPE-matrix disintegrate when held above the melting point of the LCP. Annealing of the blends at this melting temperature results in changes of the morphology and in a fairly rapid decrease of the modulus of elasticity.  相似文献   

18.
The morphology of a polycarbonate (PC)-based blend containing a thermotropic liquid crystalline polymer (LCP) component has been characterized in terms of the layer structure, layer thickness, aspect ratio, and number of the shear-induced fibers developed during injection molding. This dispersed LCP phase was still embedded as fibers and deformed droplets in the PC matrix, and their tensile modulus was usually unknown due to the testing problems. Based on the morphological characteristics, a calculation procedure has been developed to estimate the modulus of these fibers and droplets by using a set of micromechanical models. It has been found that the average tensile modulus of these shear-induced LCP fibers and deformed droplets seems to be a material constant, independent of the injection molding condition, i.e., the shear flow condition. For the LCP Vectra A950 studied, the calculated tensile modulus was 24.0 GPa. This value was in fair agreement with that reported in literature. It was larger than that of the injection-molded pure LCP samples and smaller than that of the drawn pure LCP strand.  相似文献   

19.
Polyacetal (POM) and ethylene octene copolymer(EOC) elastomers form immiscible blends with extremely low compatibility. In order to improve the dispersion, stability and properties of these blends, dynamic vulcanization was carried out in a twin screw extruder using dicumyl peroxide. The tensile strength decreased with increase in % elongation at break for both blend systems. There was a drastic decrease in impact strength for unvulcanized blends as the elastomer content increased and this was attributed to the coalescence of the elastomer particles as their content increased. In the case of dynamically vulcanized blends there was a significant increase in impact strength as the levels of elastomer increased. Dynamic mechanical analysis has been carried out to investigate the effect of blend composition and dynamic vulcanization on dynamic mechanical parameters such as storage modulus, loss modulus and loss factor. The results indicate gross incompatibility of POM and EOC blends. However, dynamically vulcanized blends show better adhesion between component polymers. The morphological studies reveal that the particle size and coalescence of elastomer was significantly reduced in comparison to unvulcanized bends. The phase adhesion was improved by dynamic vulcanization. Hence, it was observed that dynamic vulcanization effectively improves the morphology of the blend system and enhances the properties of polyacetal.  相似文献   

20.
A poly(trimethylene terephthalate) (PTT)/polypropylene (PP) blend and the nanocomposites were prepared with and without the addition of a compatibilizer precursor [maleic anhydride grafted polypropylene (MAPP)]. A reactive route was used for the compatibilization with the addition of MAPP during melt blending in a batch mixer. Organically modified nanoclays were used as nanoscale reinforcements to prepare the blend nanocomposites. Mechanical tests revealed optimum performance characteristics at a PTT/PP blend ratio of 80 : 20. Furthermore, incorporation of nanoclays up to 3 wt % showed a higher impact strength and higher tensile strength and modulus in the blend nanocomposites compared to the optimized blend. The nanocomposite formation was established through X‐ray diffraction and transmission electron microscopy (TEM). Thermal measurements were carried out with differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). DSC thermograms revealed an increase in the crystallization temperature in the presence of the nanoclays in the blend system containing Cloisite 30B. TGA thermograms also indicated that the thermal stability of blend increased with the incorporation of Cloisite 30B. Furthermore, dynamic mechanical analysis measurements showed that the Cloisite 30B nanocomposite had the maximum modulus compared to other nanocomposites. TEM micrographs confirmed an intercalated morphology in the blend nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号