首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some experiments on the melting of thermoplastic polymeric materials in single screw extruders are described. Although these were of the now familiar screw extraction type, special care was taken to distinguish between material melted by screw rotation and that melted during the subsequent cooling operation. A barrel which could be split longitudinally was also used, thus avoiding some of the disadvantages of axial extraction. A theoretical model is proposed which, unlike previous models, allows the solid bed of material in the screw channel to accelerate naturally, and also allows for the presence of a film of molten material between the bed and the screw. This model gives satisfactory predictions of melting performance. Comparison with experimental results shows that break-up of the solid bed occurs when the model predicts rapid acceleration of the bed. Bed break-up and the resulting surging may be reduced or prevented by the use of screw cooling which has the effect of inhibiting the formation of a melt film at the screw surface.  相似文献   

2.
A model for the melting process in a self wiping co-rotating twin screw extruder is described. Self-wiping co-rotating twin screw extruders are modular and starve fed. This leads to melting mechanisms that are different from single screw extruders. The melting process in the modular screw configurations generally occurs in specialized sections such as kneading disk blocks. The model, based on our previous experimental observations, considers the formation of two stratified layers of melt in contact with the hot barrel and solid pellets in contact with the relatively colder screw. In the kneading disk blocks, a part of the solid bed is blocked because of the relative stagger between successive disks. The model predicts both the location of melting and melting lengths in a screw configuration. Calculations for individual screw elements and kneading disc elements are presented first. Melting in a modular configuration of these elements is then considered. The effect of operating variables such as mass flow rate and screw speed on melting is then studied. The model is put in a dimensionless form and the effect of various dimensionless groups is discussed. We make a comparison to the experiment and agreement is good.  相似文献   

3.
This paper defines through a mathematical model the advantages and disadvantages of barrier screws as far as their melting and mixing performances in the transition zone are concerned. The melting analysis is based on the Tadmor's original model, and the flow in the melt channel is considered to be non-Newtonian and nonisothermal. The performance of these barrier screws is investigated for the solids channel in terms of melting rate/interface a I contact area; melting efficiency; melting length; solid bed velocity profile; and power consumption in the melt film at barrel surface. For the melt channel, their performance is investigated in terms of pressure buildup; average bulk temperature; power consumption in the melt channel and in the main flight clearance at barrel surface; and average bulk mixing. The present study confirms that the increased-pitch multichannel screw (Ingen Housz screw) outperforms clearly the other barrier screws investigated, since it gives the highest melting rate with reasonable pressure buildup in the melt channel. When compared with conventional screws, all the barrier screws examined give better melting performance.  相似文献   

4.
A fully predictive computer model has been developed for a single-screw plasticating extrusion (with conventional screws). The model takes into account five zones of the extruder (hopper, solids conveying, delay zone, melting zone, melt conveying) and the die, and describes an operation of the extruder-die system, making it possible to predict a mass flow rate of the polymer, pressure and temperature profiles along the screw channel and in the die, solid bed profile, and power consumption. Moreover, mixing degree, temperature fluctuation and viscoelastic properties of the polymer are estimated. The simulation parameters are the material and rheological properties of the polymer, the screw, hopper and die geometry, and the operating conditions (screw speed and barrel temperature profile). Such a comprehensive approach to the modeling of extrusion creates the possibility of optimizing the process, for example, from the point of view of the quality of extrusion. The model has been verified experimentally for a low-density polyethylene on a 45 mm diameter single-screw extruder.  相似文献   

5.
The pressure distribution through the melting and melt zones of a plasticating extruder is discussed, and an analysis is described for predicting the pressure profile. In the stable melting zone, the pressure profile is calculated based on flow in the melt pool, and the pressure is strongly influenced by the flow of the solid bed of plastic. The solid bed flow is primarily determined by the polymer rigidity in the screw compression section. If the size (through a melting analysis) and the velocity (through a solid bed acceleration parameter) of the solid bed along the screw channel are reasonably approximated, the pressure profile is reasonably approximated by this analysis. Inaccurate representations of the size or velocity of the solid bed can yield inaccurate pressure profile prediction. In the unstable melting region, the assumption of a complete melt yields reasonable pressure predictions. The introduction of these concepts into an extrusion model permits a more accurate prediction of the operating RPM of a given screw design in a given machine.  相似文献   

6.
By measuring the solid-bed transfer velocity, width and thickness under various conditions, die following results are obtained. As the result of melting, the solid bed decreases in width and thickness almost with the same rate, and the solid-bed transfer velocity is constant, while a melt layer exists between the solid bed and the screw root; also, when the phenomenon of dam-up occurs, caused by the combined effect of decreasing depth of the screw channel with tin insufficient decrease of solid-bed thickness, the transfer velocity increases proportional to the rate of decrease of channel depth. Consequently, the solid bed is considered to behave us loosely packed particles. A new plasticating model is developed by making the above results an assumption and adopting finite differential calculus with the Newton-Raphson method to obtain accurately the melting velocity, melt profile, and solid-bed temperature. Calculated values are in remarkably good agreement with the experimental values Solid-bed softening point, pressure, and screw torque are also successfully estimated.  相似文献   

7.
K.L. YungYan Xu  K.H. Lau 《Polymer》2002,43(3):983-988
Plastic injection molding machine that can be classified as reciprocating extruders are among the most widely used machines in industry. However, most studies in the injector design were based on steady state models developed for extruders that involved no reciprocation. This over-simplified model leaves out the most important aspect of reciprocation. The authors of this paper have derived a transient melting model that takes care of the change from the conventional steady extrusion to that of a discontinuous transient process. This paper describes simulations conducted on the derived model to explain observation that cannot be explained by the steady extrusion model in practical experiments. The simulation was conducted by using parameters given in Donovan's experiment [Polym Engng, 11 (1971) 353]. The simulation results are found to qualitatively match with the experimental results. It proves the validity of the model. Simulation has also been conducted with the model on materials that their viscosities are temperature and shear rate dependent. The result has shown that screw rotation speed, screw axial movement speed, barrel thickness, barrel heat capacity, temperature of heater and polymer are factors affecting the melting speed and the transient effects.  相似文献   

8.
A theoretical model for melting in reciprocating screw injection molding machines is proposed. The model permits the calculation of the solid bed profile as a function of time during the injection cycle. It consists of a dynamic extrusion melting model for the rotation period, a transient heat conduction model with a phase transition for the screw rest period, and a proposed model for the drifting of the beginning of melting during the injection cycle.  相似文献   

9.
A novel melting model for single screw extruders with a grooved melting zone was established. The whole solid plug, which came from the grooved feed zone, was ruptured and melted mainly by continuously changing the volume of the barrel grooves and the screw channel in the grooved melting zone. A new single screw extruder platform with hydraulic clamshell barrels was constructed to investigate the melting of solid polymer with different combinations of barrels and screws. The melting model was verified by experiments. The results showed that the melting started earlier and finished in a shorter length for single screw extruders with a grooved melting zone than that for conventional single screw extruders and the melting efficiency was improved by introducing a grooved melting zone to a single screw extruder. The theoretical values are consistent with experimental results. The novel single screw extruder with grooved melting zone can dramatically increase the plasticizing efficiency and the throughput.  相似文献   

10.
利用可视化挤出实验对螺杆冷却情况下的单螺杆挤出熔融机理进行了研究。实验表明,挤出过程中固体床始终保持连续而不会出现固体床破碎现象,螺槽表面会出现聚合物的亚稳态相转变行为。通过建立螺杆冷却时熔融理论的数学模型,用数值方法获得了熔融段聚合物流场的数值解,结果表明,理论预测的固体床宽度和机筒压力与实验结果基本吻合。  相似文献   

11.
利用剖分式料筒振动诱导单螺杆挤出机以及透明料筒振动诱导单螺杆挤出机对振动力场作用下的熔融过程进行了可视化实验研究,获得了熔融过程的固体床宽度分布曲线;对比了不同振动参数条件下的熔融长度与无振动条件下的熔融长度。实验结果表明,振动的引入可加快熔融进程,缩短熔融长度。对应不同的材料,不同的螺杆转速、料筒温度设置等工艺条件存在一个振动强度范围,在此范围内随着振动强度的增加,熔融速度进一步加快。  相似文献   

12.
A theoretical model for melting in plasticating extruders is described. Compared to previous models, this model introduces more accurate and less restrictive assumptions, adds a mass balance on the entire channel, and replaces certain approximate solutions by exact solutions. Flow of the solid bed is represented by a solid bed acceleration parameter, SBAP, which permits solid bed acceleration in a screw compression section. New experimental melting data for a variety of screw designs, polymers, and extruder sizes are presented and compared to the theoretical predictions. With the optimum SBAP, reasonably accurate model prediction of the melting profiles is observed for a wide variety of cases.  相似文献   

13.
A new “assisted” dry granulation method has been devised for the twin‐screw granulator. The method may be beneficial to drug preparation as it limits heat exposure to only one barrel zone, much shorter than melt granulation. Its mechanism was investigated using four placebo formulations, each containing a polymer binder with a glass transition temperature lower than 130°C. Variables of study included screw configuration, screw speed, barrel zone temperature, and moisture content. Granulated samples were characterized for size and porosity while feed powders were examined for their thermal transitions, interparticle friction, cohesion, and sintering rate. Results indicated that granule coalescence relied on melting of polymer binder in the kneading blocks by a combination of heat conducted from barrel and generated from screw speed friction. Successful granulation was possible with minimal addition of water, although varying the moisture content showed the relevance of the polymer's glass transition temperature and sintering progress. © 2017 American Institute of Chemical Engineers AIChE J, 2017  相似文献   

14.
Output uniformity is one of the main factors limiting the maximum output obtainable from a single screw plasticating extruder, and is adversely affected by surging. Several causes of surging have been identified, perhaps the most important being instabilities in the melting process. These are caused by periodic break-up of the bed of compacted solid polymer formed in the screw channel. Solid bed break-up is shown, both experimentally and theoretically, to be associated with rapid acceleration of the bed in the downstream direction parallel to the screw flight. A novel method of measuring solid bed velocity and hence acceleration is described. The theoretical model of the melting process is shown to be capable of predicting this acceleration reliably, and therefore the tendency for a particular combination of screw design, material and operating conditions to cause surging.  相似文献   

15.
An experimental investigation into the performance in general and the melting behavior in particular of a single screw extruder running with a low density polyethylene power has been carried out and the results compared with those for a granular feedstock of low density polyethylene having similar melt properties. It was found that the tendency was for the output rate, pressure generated and specific power consumption to be lower for the powders, and that the removal of barrel heating near the feed hopper increased these parameters. Two melting mechanisms were observed in powder extrusion; one being the classic “Maddock” type, and the other such that the solid bed and melt pool were in reversed positions relative to the Maddock case. There was a trend for this latter mechanism to operate with low screw speeds, shallow channels and full heating. Melt initiation occurred nearer the feed end and melting was completed much more quickly with powders. An explanation of the mechanisms is proposed which is based on the observation of early melt initiation, and the industrial practices of feed zone cooling and increasing feed pressure generation to improve the performance of extruders running with powders are seen to be consistent with this proposition.  相似文献   

16.
A model for investigating the melting process of polymer in a vibration‐induced single‐screw (VISS) extruder is presented. The key feature of this model is as follows: vibration force field is introduced into the overall course of extrusion by the axial vibration of the screw, and the velocity distribution in the polymer melt behaves strongly nonlinear and time‐dependent. To analyze this model, half‐open barrel visible experimental method and low‐density polyethylene material are adopted to investigate the effect of the vibration parameters on the melting process, which goes into further details of study and research on the melting mechanism, and thus, a novel physical melting model is derived. Combining the conservation equations of mass, movement, energy, and constitutive, analytical expressions of the melting rate, the energy consumption, the length of melting section, and the distribution of solid bed are obtained. This model enables the prediction of the processing and design parameters in the VISS extruders from which the optimum conditions for designing VISS extruder and polymer processing are obtained. The theory is supplemented by a calculation sample and experiment, which shows that the introduction of vibration force field can improve the melting capacity and decrease the power consumption of extruder greatly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3860–3876, 2006  相似文献   

17.
The effect of a vibration force field on the melting process of an extruder is studied. It is shown that the mechanism for melting differs from conventional theory. Experimental studies of melting of low‐density polyethylene (LDPE) pellets in a vibration‐induced single‐screw (VISS) extruder show that melting is initiated on the inside of the barrel and the surface of screw. Models were developed that explain the melting mechanism in those regions. The melting at the surface of the screw is mainly initiated by frictional work on the pellets by the vibration and rotation of the screw. The melting action at the barrel is induced by a barrel temperature higher than the melting point and propagated by viscous dissipation heating of the melt film produced. The theory is supplemented by a calculation sample, which shows good agreement with experimental data obtained on a transparent barrel VISS (T‐VISS) extruder and a half‐open barrel VISS (H‐VISS) extruder with LDPE. The results of the experiment and calculation sample indicate that the introduction of vibration‐induced field can improve the melting capacity of extruder to a great extent. The present model enables the prediction of processing parameters for VISS extruders, from which the optimum operating conditions can be obtained. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2504–2514, 2007  相似文献   

18.
In this paper, a model for the conveying of solid polymer in the feeding zone of intermeshing co-rotating twin screw extruders is proposed. The theoretical model uses an approach that is similar to that commonly used in single screw extruders; however, it takes into account the particular geometry of the screw channel, the partially filled channel, and the special configuration of the two self-wiping screws. The model thus considers two conveying mechanisms: the first one in the channel, which is analyzed in terms of polymer-metal friction, and the second one, which is mainly an axial transport in the intermeshing zone. The theoretical predictions of the model are compared with the experimental results obtained on a laboratory extruder with a polymer in powder form, and satisfactory agreement is observed. The model enables the prediction of the evolution of the filling of the screws towards the geometry and the operating conditions. This is an important key to analyzing the thermal aspects in this zone, which can lead to a prediction of the melting capacity of the extruder. Indeed, the filling of the feeding zone defines the heat transport that occurs between the hot barrel and the solid polymer.  相似文献   

19.
This paper addresses the apparent controversy surrounding the role of the solid bed mechanics in the Maddock melting mechanism. It is demonstrated that the inability of the melting models based on the freely deformable solid bed concept to predict accurately the pressure gradients in the melting zone is not exclusively due to the highly simplified isothermal Newtonian treatment of the melt pool as presumed previously. This study has shown that when using a non isothermal non-Newtonian flow model for the melt pool, the freely deformable solid bed concept still results in unrealistically low pressure gradients while it may give good predictions of the melting rates. To the contrary, when a rigid solid bed is assumed, the pressure predictions tend to represent the experimental data more closely, whereas the theoretical melting rates seems to become less realistic. In view of the fact that both the freely deformable and the rigid solid bed concepts show such inconsistencies, it has been concluded that the mechanics governing the solids and melt transport in the melting zone require some additional examination, most notably, the influence of the constitutive behavior of the solid bed and of the cross-channel melt circulation around the solid bed, and possibly of the melting kinetics for semicrystalline polymers.  相似文献   

20.
利用自制的液压剖分式沟槽机筒单螺杆挤出机实验平台,研究了沟槽机筒单螺杆挤出机的熔融长度和螺杆转速的关系,实验验证了单螺杆挤出机固体输送段和熔融段机筒均开设沟槽的耦合双槽熔融理论。结果表明,与传统光滑机筒单螺杆挤出机和IKV单螺杆挤出机相比,在熔融段机筒开设沟槽的单螺杆挤出机的熔融长度较短且熔融过程比较稳定,熔融效率得到较大提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号