首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tridecaptin A1 is a linear antimicrobial lipopeptide comprised of 13 amino acids, including three diaminobutyric acid (Dab) residues. It displays potent activity against Gram‐negative bacteria, including multidrug‐resistant strains. Using solid‐phase peptide synthesis, we performed an alanine scan of a fully active analogue, octyl‐tridecaptin A1, to determine key residues responsible for activity. The synthetic analogues were tested against ten organisms, both Gram‐positive and Gram‐negative bacteria. Modification of D ‐Dab8 abolished activity, and marked decreases were observed with substitution of D ‐allo‐Ile12 and D ‐Trp5. Circular dichroism showed that octyl‐tridecaptin A1 adopts a secondary structure in the presence of model phospholipid membranes, which was weakened by D ‐Dab8‐D ‐Ala, D ‐allo‐Ile12‐D ‐Ala, and D ‐Trp5‐D ‐Ala substitutions. The antimicrobial activity of the analogues is directly correlated to their ability to adopt a stable secondary structure in a membrane environment.  相似文献   

2.
A significant number of antiviral agents used in clinical practice are amino acids, short peptides, or peptidomimetics. Among them, several HIV protease inhibitors (e. g. lopinavir, atazanavir), HCV protease inhibitors (e. g. grazoprevir, glecaprevir), and HCV NS5A protein inhibitors have contributed to a significant decrease in mortality from AIDS and hepatitis. However, there is an ongoing need for the discovery of new antiviral agents and the development of existing drugs; amino acids, both proteinogenic and non-proteinogenic in nature, serve as convenient building blocks for this purpose. The synthesis of non-proteinogenic amino acid components of antiviral agents could be challenging due to the need for enantiomerically or diastereomerically pure products. Herein, we present a concise review of antiviral agents whose structures are based on amino acids of both natural and unnatural origin. Special attention is paid to the synthetic aspects of non-proteinogenic amino acid components of those agents.  相似文献   

3.
The complex natural products silvestrol ( 1 ) and episilvestrol ( 2 ) are inhibitors of translation initiation through binding to the DEAD‐box helicase eukaryotic initiation factor 4A (eIF4A). Both compounds are potently cytotoxic to cancer cells in vitro, and 1 has demonstrated efficacy in vivo in several xenograft cancer models. Here we show that 2 has limited plasma membrane permeability and is metabolized in liver microsomes in a manner consistent with that reported for 1 . In addition, we have prepared a series of analogues of these compounds where the complex pseudo‐sugar at C6 has been replaced with chemically simpler moieties to improve drug‐likeness. Selected compounds from this work possess excellent activity in biochemical and cellular translation assays with potent activity against leukemia cell lines.  相似文献   

4.
Three novel structurally related pentadecapeptides, named lasioglossins, were isolated from the venom of the eusocial bee Lasioglossum laticeps. Their primary sequences were established as H‐Val‐Asn‐Trp‐Lys‐Lys‐Val‐Leu‐Gly‐Lys‐Ile‐Ile‐Lys‐Val‐Ala‐Lys‐NH2 (LL‐I), H‐Val‐Asn‐Trp‐Lys‐Lys‐Ile‐Leu‐Gly‐Lys‐Ile‐Ile‐Lys‐Val‐Ala‐Lys‐NH2 (LL‐II) and H‐Val‐Asn‐Trp‐Lys‐Lys‐Ile‐Leu‐Gly‐Lys‐Ile‐Ile‐Lys‐Val‐Val‐Lys‐NH2 (LL‐III). These lasioglossins exhibited potent antimicrobial activity against both Gram‐positive and Gram‐negative bacteria, low haemolytic and mast cell degranulation activity, and a potency to kill various cancer cells in vitro. The lasioglossin CD spectra were measured in the presence of trifluoroethanol and sodium dodecyl sulfate solution and indicated a high degree of α‐helical conformation. NMR spectroscopy, which was carried out in trifluoroethanol/water confirmed a curved α‐helical conformation with a concave hydrophobic and convex hydrophilic side. To understand the role of this bend on biological activity, we studied lasioglossin analogues in which the Gly in the centre of the molecule was replaced by other amino acid residues (Ala, Lys, Pro). The importance of the N‐terminal part of the molecule to the antimicrobial activity was revealed through truncation of five residues from both the N and C termini of the LL‐III peptide. C‐terminal deamidation of LL‐III resulted in a drop in antimicrobial activity, but esterification of the C terminus had no effect. Molecular modelling of LL‐III and the observed NOE contacts indicated the possible formation of a bifurcated H‐bond between hydrogen from the Lys15 CONH peptide bond and one H of the C‐terminal CONH2 to the Ile11 oxygen atom. Such interactions cannot form with C‐terminal esterification.  相似文献   

5.
We report the synthesis and biological evaluation of a series of (?)‐englerin A analogues obtained along our previously reported synthetic route based on a stereoselective gold(I) cycloaddition process. This synthetic route is a convenient platform to access analogues with broad structural diversity and has led us to the discovery of unprecedented and easier‐to‐synthesize derivatives with an unsaturation in the cyclopentyl ring between C4 and C5. We also introduce novel analogues in which the original isopropyl motif has been substituted with cyclohexyl, phenyl, and cyclopropyl moieties. The high selectivity and growth‐inhibitory activity shown by these new derivatives in renal cancer cell lines opens new ways toward the final goal of finding effective drugs for the treatment of renal cell carcinoma (RCC).  相似文献   

6.
The elongated structures of polyamine inverse agonists such as 1,12‐diaminododecane (N12N) and 5‐(4‐aminobutyl)‐2‐thiopheneoctanamine (N4T8N) lend themselves to a combinatorial chemistry approach to explore a potential polyamine pharmacophore at the NMDA receptor. Herein we describe more than 100 new analogues of N4T8N obtained by breaking up the long octanamine arm into a dipeptide chain of equivalent length. Solid‐phase parallel synthesis based on cross‐linked polystyrene and a Wang anchor allowed the low‐scale preparation of four small libraries based on the combination of two amino acid residues (out of Gly, Leu, Phe, Lys, phenylglycine, Tyr, Trp, His, and Arg). The obtained compounds were tested as modulators of [3H]MK‐801 binding to rat brain membranes and of NMDA‐induced currents in cultured rat hippocampal neurons. Compounds with two aromatic residues acted as binding inhibitors (inverse agonists). Compounds with two Lys residues acted as binding stimulators (agonists) and had stimulatory and inhibitory effects on NMDA‐induced currents, depending on the holding potential. High sensitivity of binding inhibition to spermine was conferred by a Tyr residue, whereas a His residue favored high potency at acidic pH.  相似文献   

7.
A library of novel 4-{[(benzyloxy)carbonyl]amino}-2-hydroxybenzoic acid amides was designed and synthesized in order to provide potential acetyl- and butyrylcholinesterase (AChE/BChE) inhibitors; the in vitro inhibitory profile and selectivity index were specified. Benzyl(3-hydroxy-4-{[2-(trifluoromethoxy)phenyl]carbamoyl}phenyl)carbamate was the best AChE inhibitor with the inhibitory concentration of IC50 = 36.05 µM in the series, while benzyl{3-hydroxy-4-[(2-methoxyphenyl)carbamoyl]phenyl}-carbamate was the most potent BChE inhibitor (IC50 = 22.23 µM) with the highest selectivity for BChE (SI = 2.26). The cytotoxic effect was evaluated in vitro for promising AChE/BChE inhibitors. The newly synthesized adducts were subjected to the quantitative shape comparison with the generation of an averaged pharmacophore pattern. Noticeably, three pairs of fairly similar fluorine/bromine-containing compounds can potentially form the activity cliff that is manifested formally by high structure–activity landscape index (SALI) numerical values. The molecular docking study was conducted for the most potent AChE/BChE inhibitors, indicating that the hydrophobic interactions were overwhelmingly generated with Gln119, Asp70, Pro285, Thr120, and Trp82 aminoacid residues, while the hydrogen bond (HB)-donor ones were dominated with Thr120. π-stacking interactions were specified with the Trp82 aminoacid residue of chain A as well. Finally, the stability of chosen liganded enzymatic systems was assessed using the molecular dynamic simulations. An attempt was made to explain the noted differences of the selectivity index for the most potent molecules, especially those bearing unsubstituted and fluorinated methoxy group.  相似文献   

8.
In our previous work, we replaced the TRM (tryptophan-rich motif) of T20 (Enfuvirtide) with fatty acid (C16) to obtain the novel lipopeptide LP-40, and LP-40 displayed enhanced antiviral activity. In this study, we investigated whether the C16 modification could enhance the high-resistance barrier of the inhibitor LP-40. To address this question, we performed an in vitro simultaneous screening of HIV-1NL4-3 resistance to T20 and LP-40. The mechanism of drug resistance for HIV-1 Env was further studied using the expression and processing of the Env glycoprotein, the effect of the Env mutation on the entry and fusion ability of the virus, and an analysis of changes to the gp41 core structure. The results indicate that the LP-40 activity is enhanced and that it has a high resistance barrier. In a detailed analysis of the resistance sites, we found that mutations in L33S conferred a stronger resistance, except for the well-recognized mutations in amino acids 36–45 of gp41 NHR, which reduced the inhibitory activity of the CHR-derived peptides. The compensatory mutation of eight amino acids in the CHR region (NDQEEDYN) plays an important role in drug resistance. LP-40 and T20 have similar resistance mutation sites, and we speculate that the same resistance profile may arise if LP-40 is used in a clinical setting.  相似文献   

9.
We investigated the derivation of non‐natural peptide triazole dual receptor site antagonists of HIV‐1 Env gp120 to establish a pathway for developing peptidomimetic antiviral agents. Previously we found that the peptide triazole HNG‐156 [R‐I‐N‐N‐I‐X‐W‐S‐E‐A‐M‐M‐CONH2, in which X=ferrocenyltriazole‐Pro (FtP)] has nanomolar binding affinity to gp120, inhibits gp120 binding to CD4 and the co‐receptor surrogate mAb 17b, and has potent antiviral activity in cell infection assays. Furthermore, truncated variants of HNG‐156, typified by UM‐24 (Cit‐N‐N‐I‐X‐W‐S‐CONH2) and containing the critical central stereospecific LX‐LW cluster, retain the functional characteristics of the parent peptide triazole. In the current work, we examined the possibility of replacing natural with unnatural residue components in UM‐24 to the greatest extent possible. The analogue with the critical “hot spot” residue Trp 6 replaced with L ‐3‐benzothienylalanine (Bta) (KR‐41), as well as a completely non‐natural analogue containing D ‐amino acid substitutions outside the central cluster (KR‐42, DCit‐DN‐DN‐DI‐X‐Bta‐DS‐CONH2), retained the dual receptor site antagonism/antiviral activity signature. The results define differential functional roles of subdomains within the peptide triazole and provide a structural basis for the design of metabolically stable peptidomimetic inhibitors of HIV‐1 Env gp120.  相似文献   

10.
We report the synthesis and biological evaluation of phenylcarboxylic acid and phenylboronic acid containing HIV-1 protease inhibitors and their functional effect on enzyme inhibition and antiviral activity in MT-2 cell lines. Inhibitors bearing bis-THF ligand as P2 ligand and phenylcarboxylic acids and carboxamide as the P2′ ligands, showed very potent HIV-1 protease inhibitory activity. However, carboxylic acid containing inhibitors showed very poor antiviral activity relative to carboxamide-derived inhibitors which showed good antiviral IC50 value. Boronic acid derived inhibitor with bis-THF as the P2 ligand showed very potent enzyme inhibitory activity, but it showed lower antiviral activity than darunavir in the same assay. Boronic acid containing inhibitor with a P2-Crn-THF ligand also showed potent enzyme Ki but significantly decreased antiviral activity. We have evaluated antiviral activity against a panel of highly drug-resistant HIV-1 variants. One of the inhibitors maintained good antiviral activity against HIVDRVRP20 and HIVDRVRP30 viruses. We have determined high resolution X-ray structures of two synthetic inhibitors bound to HIV-1 protease and obtained molecular insight into the ligand-binding site interactions.  相似文献   

11.
Medicinal chemistry has witnessed major advances with the discovery of small synthetic molecules that mimic natural peptidic substrates. These small synthetic mimics do not undergo proteolytic degradation, an advantage they hold over their natural counterparts. Small synthetic molecules make up a number of life-saving marketed drugs that inhibit certain physiologically relevant proteases. The advent of sophisticated instrumental methods, such as X-ray crystallography and high-field NMR, has played a pivotal role in the design of structure-based enzyme inhibitors. Highly stereocontrolled methods of synthesis have led to a variety of functionally diverse molecules that function as peptidomimetics because they have isosteric subunits not affected by proteolytic enzymes. Further studies to optimize biological activity and achieve desirable pharmacokinetic profiles can eventually lead to drug substances. The practice of constraining natural amino acids like their conformationally rigid counterparts has been highly successful in the design and synthesis of peptidomimetic molecules. With some notable exceptions, structural information gathered from protein X-ray crystallography of therapeutically relevant target enzymes, alone or in complex forms with inhibitor molecules, has been instrumental in the design of peptidomimetics. For example, a significant number have become marketed drugs as antihypertensives and antivirals. Natural products have also been a source of inspiration for the design and synthesis of truncated analogues with the intention of maintaining, or even improving, their biological activities. However, lower molecular weight peptides are not suitable as therapeutic agents because they are subject to rapid amide proteolysis. They are poorly transported to the brain and rapidly excreted through the liver and kidney. Thus, lower molecular weight peptides are eliminated as potential drug substances in clinical practice. A synthetic peptidomimetic is needed that is resistant to cleavage but maintains its biological activity. Conformationally constrained monocyclic and bicyclic unnatural amino acids can be directly incorporated in a potential inhibitor molecule as part of the design element. In this Account, we describe our efforts in the synthesis of constrained azacycles that contain proline or pipecolic acid as an integral part of bicyclic and polycyclic amino acids. We devised syntheses of conformationally biased monocyclic, bicyclic, and polycyclic amino acid analogues, into which pharmacologically or structurally relevant functional groups were incorporated. Stereocontrolled reactions for C-C, C-N, and C-O bond formation had to be implemented on appropriately protected amino acid frameworks. A number of these frameworks provided access to functionally diverse scaffolds for further use as core subunits in more elaborated structures. Specific applications as peptidomimetics of natural substrates for relevant enzymes, such as thrombin, were also pursued, resulting in highly active inhibitors in vitro.  相似文献   

12.
13.
Primary sulfonamide derivatives with various heterocycles represent the most widespread group of potential human carbonic anhydrase (hCA) inhibitors with high affinity and selectivity towards specific isozymes from the hCA family. In this work, new 4-aminomethyl- and aminoethyl-benzenesulfonamide derivatives with 1,3,5-triazine disubstituted with a pair of identical amino acids, possessing a polar (Ser, Thr, Asn, Gln) and non-polar (Ala, Tyr, Trp) side chain, have been synthesized. The optimized synthetic, purification, and isolation procedures provided several pronounced benefits such as a short reaction time (in sodium bicarbonate aqueous medium), satisfactory yields for the majority of new products (20.6–91.8%, average 60.4%), an effective, well defined semi-preparative RP-C18 liquid chromatography (LC) isolation of desired products with a high purity (>97%), as well as preservation of green chemistry principles. These newly synthesized conjugates, plus their 4-aminobenzenesulfonamide analogues prepared previously, have been investigated in in vitro inhibition studies towards hCA I, II, IV and tumor-associated isozymes IX and XII. The experimental results revealed the strongest inhibition of hCA XII with low nanomolar inhibitory constants (Kis) for the derivatives with amino acids possessing non-polar side chains (7.5–9.6 nM). Various derivatives were also promising for some other isozymes.  相似文献   

14.
A 50-compound library based on the marine natural product oroidin was synthesized and assayed for anti-biofilm activity against PAO1 and PA14, two strains of the medically relevant gamma-proteobacterium Pseudomonas aeruginosa. Through structure-activity relationship (SAR) analysis of analogues based on the oroidin template, several conclusions can be drawn as to what structural properties of the synthetic derivatives are necessary to elicit a biological response. Notably, the most active analogues identified were those that contained a 2-aminoimidazole (2-AI) motif and a dibrominated pyrrolecarboxamide subunit. Here we disclose the synthesis and subsequently determined biological activity of this unique class of compounds as inhibitors of biofilm formation that have no direct antibiotic effect.  相似文献   

15.
Various structurally modified analogues of FR235222 (1), a natural tetrapeptide inhibitor of mammalian histone deacetylases, were prepared in a convergent approach. The design of the compounds was aimed to investigate the effect of structural modifications of the tetrapeptide core involved in enzyme binding in order to overcome some synthetic difficulties connected with the natural product 1. The modifications introduced could also help identify key structural features involved in the mechanism of action of these compounds. The prepared molecules were subjected to in vitro pharmacological tests, and their potency was tested on cultured cells. Two of the components of the array were found to be more potent than the parent compound 1 and almost as efficient as trichostatin A (TSA). These results demonstrate that it is possible to synthesize highly active cyclic tetrapeptides using commercially available amino acids (with the exception of 2-amino-8-oxodecanoic acid, Ahoda). The nature of the residue in the second position of the cyclic peptide and the stereochemistry of the Ahoda tail are important for the inhibitory activity of this class of cyclic tetrapeptide analogues.  相似文献   

16.
We prepared the two enantiomers of 3‐(3′‐quinolyl)‐alanine (Qla, 1 ) in multigram scale by asymmetric hydrogenation. These amino acids, protected as Fmoc derivatives, were then used in the solid‐phase synthesis of two new somatostatin 14 (SRIF‐14) analogues 8 a and 8 b , tetradecapeptides in which the tryptophan residue (Trp8) is replaced by one of the two enantiomers of 3‐(3′‐quinolyl)‐alanine (Qla8) and therefore lack the N? H bond in residue 8. The selectivity of these new analogues for the somatostatin receptors, SSTR1–5, was measured. Substitution with L ‐Qla8 yielded peptide 8 a , which was highly selective for SSTR1 and SSTR3, with an affinity similar to that of SRIF‐14. Substitution by D ‐Qla gave the relatively selective analogue 8 b , which showed high affinity for SSTR3 and significant affinity for SSTR1, SSTR2 and SSTR5. The biological results demonstrate that bulky and electronically poor aromatic amino acids at position 8 are compatible with strong activity with SSTR1 and SSTR3. Remarkably, these high affinity levels were achieved with peptides in which the conformational mobility was increased with respect to that of SRIF‐14. This observation suggests that conformational rigidity is not required, and might be detrimental to the interaction with receptors SSTR1 and SSTR3. The absence of an indole N proton in Qla8 might also contribute to the increased flexibility observed in these analogues.  相似文献   

17.
New peptidomimetic furin inhibitors with unnatural amino acid residues in the P3 position were synthesized. The most potent compound 4‐guanidinomethyl‐phenylacteyl‐Arg‐Tle‐Arg‐4‐amidinobenzylamide (MI‐1148) inhibits furin with a Ki value of 5.5 pM . The derivatives also strongly inhibit PC1/3, whereas PC2 is less affected. Selected inhibitors were tested in cell culture for antibacterial and antiviral activity against infectious agents known to be dependent on furin activity. A significant protective effect against anthrax and diphtheria toxin was observed in the presence of the furin inhibitors. Furthermore, the spread of the highly pathogenic H5N1 and H7N1 avian influenza viruses and propagation of canine distemper virus was strongly inhibited. Inhibitor MI‐1148 was crystallized in complex with human furin. Its N‐terminal guanidinomethyl group in the para position of the P5 phenyl ring occupies the same position as that found previously for a structurally related inhibitor containing this substitution in the meta position, thereby maintaining all of the important P5 interactions. Our results confirm that the inhibition of furin is a promising strategy for a short‐term treatment of acute infectious diseases.  相似文献   

18.
The development of effective strategies for modulating the reactivity and selectivity of cytochrome P450 enzymes represents a key step toward expediting the use of these biocatalysts for synthetic applications. We have investigated the potential of unnatural amino acid mutagenesis to aid efforts in this direction. Four unnatural amino acids with diverse aromatic side chains were incorporated at 11 active‐site positions of a substrate‐promiscuous CYP102A1 variant. The resulting “uP450s” were then tested for their catalytic activity and regioselectivity in the oxidation of two representative substrates: a small‐molecule drug and a natural product. Large shifts in regioselectivity resulted from these single mutations, and in particular, for para‐acetyl‐Phe substitutions at positions close to the heme cofactor. Screening this mini library of uP450s enabled us to identify P450 catalysts for the selective hydroxylation of four aliphatic positions in the target substrates, including a C(sp3)?H site not oxidized by the parent enzyme. Furthermore, we discovered a general activity‐enhancing effect of active‐site substitutions involving the unnatural amino acid para‐amino‐Phe, which resulted in P450 catalysts capable of supporting the highest total turnover number reported to date on a complex molecule (34 650). The functional changes induced by the unnatural amino acids could not be reproduced by any of the 20 natural amino acids. This study thus demonstrates that unnatural amino acid mutagenesis constitutes a promising new strategy for improving the catalytic activity and regioselectivity of P450 oxidation catalysts.  相似文献   

19.
The natural substrate of hydroxynitrile lyase from rubber tree (HbHNL, Hevea brasiliensis) is acetone cyanohydrin, but synthetic applications usually involve aromatic cyanohydrins such as mandelonitrile. To increase the activity of HbHNL toward this unnatural substrate, we replaced active site residues in HbHNL with the corresponding ones from esterase SABP2 (salicylic acid binding protein 2). Although this enzyme catalyzes a different reaction (hydrolysis of esters), its natural substrate (methyl salicylate) contains an aromatic ring. Three of the eleven single‐amino‐acid‐substitution variants of HbHNL reacted more rapidly with mandelonitrile. The best was HbHNL‐L121Y, with a kcat 4.2 times higher and high enantioselectivity. Site‐saturation mutagenesis at position 121 identified three other improved variants. We hypothesize that the smaller active site orients the aromatic substrate more productively.  相似文献   

20.
A library of 14 cyclic peptide analogues derived from the octapeptide C-terminal sequence of the human cholecystokinin hormone (CCK(26-33), or CCK8) was designed, synthesized, and characterized. The 14 peptide analogues were rationally designed to specifically interact with the CCK type B receptor (CCK(B)-R) on the basis of the structure of the bimolecular complex between CCK8 and the third extracellular loop of CCK(B)-R, namely CCK(B)-R(352-379). The rational design of new ligands for CCK(B)-R has relied on stabilization by cyclic constraints of the structural motifs that bring the key residues of the ligand (especially Trp 30, Met 31, and Phe 33) in the proper spatial orientation for optimal interaction with the receptor. The binding affinity of the new ligands for CCK(B)-R was assessed by displacement experiments of (111)In-radiolabeled CCK8 in cells that overexpress the CCK(B) receptor. The new ligands generally showed binding affinities lower than that of parent CCK8, with the best compounds having IC50 values around 10 microM. Structure-activity relationship data show that preservation of the Trp 30-Met 31 motif is essential and that the Phe 33 side chain must be present. NMR conformational studies of the compound with maximal binding affinity (cyclo-B11, IC50=11 microM) in DPC micelles shows that this compound presents a turn-like conformation centered at the Trp 30-Met 31 segment, as planned by rational design. Such a conformation is stabilized by its interaction with the micelle rather than by the cyclic constraint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号