首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Field trials were conducted over a three-year period with chinese cabbage (Brassica pekinensis Rupr.) and carrots (Daucus carota L.) grown in a sandy soil with pH adjusted to 5.5 and 6.5. The NPK fertilizers containing 1, 30, 90, and 400 mg Cd kg–1 P were applied at the rate of 0.07, 2.1, 6.3 and 28 g Cd ha–1 yr–1. The amounts of Cd added through phosphate rock also ranged between 0.1 and 28 g ha–1 yr–1. The increased Cd application rates through NPK fertilizers increased the Cd concentration in both vegetables but the differences among treatments were not found to be significant. The Cd uptake by both crops was significantly (p<0.01) higher at pH 5.5 than at pH 6.5. Chinese cabbage exhibited lower Cd concentration than carrots. Carrot leaves contained higher Cd than its roots. Cadmium removals by chinese cabbage and carrot were about 0.7 and 1.3 g ha–1 yr–1, respectively. At pH 5.5, Cd concentrations in the two crops, based on a three-year average, were 23 and 46% higher than at pH 6.5. Cadmium uptake by chinese cabbage from different sources of phosphate rock was affected to a very limited extent. Cadmium concentration generally increased over the years. Cadmium extracted by ammonium nitrate after harvest of the crops was closely related with soil pH and Cd concentration in the plants.  相似文献   

2.
The 1990s mark the centenary of the earliest work to identify the value of rock phosphate fertilizers for Western Australian agriculture. This review summarizes this and subsequent work. We arrive at a simple conclusion: rock phosphates are ineffective fertilizers because they do not dissolve rapidly in Western Australian soils.The effectiveness of different types of rock phosphate fertilizers has been compared with the effectiveness of superphosphate in several long-term field experiments on a variety of non-leaching soils in south-western Australia. These experiments have consistently shown that, all types of rock phosphate fertilizers are between one twentieth to one third as effective as freshly applied superphosphate both in the year of application and in subsequent years. Glasshouse experiments produce similar results. Laboratory studies of soils from these experiments have shown that the poor effectiveness of the rock phosphates is primarily due to the small extent of dissolution of these fertilizers in Western Australian soils. Several factors are responsible for the inability of adequate amounts of rock phosphate to dissolve in these soils. The soils are only moderately acid (pH in water > 5.5) and generally have low pH buffering capacities so can not rapidly contribute a large supply of protons to promote extensive dissolution of rock phosphate. The soils also have low capacities to adsorb the P and Ca released during dissolution of rock phosphate. They also have low water-holding capacities, and in the field under the Mediterranean climate the soil near the surface rapidly dries between rains thereby restricting dissolution of rock phosphates. In the laboratory it has been shown that rock phosphate dissolution is considerably enhanced in permanently-moist, acid soil with high pH buffering capacity, and high P and Ca buffer capacities.Thus the low extent of dissolution of rock phosphate fertilizers in Western Australian soils is responsible for the poor agronomic effectiveness of these fertilizers measured in the field experiments.  相似文献   

3.
It is well known that the production of phosphoric fertilizers by traditional methods is connected with certain environmental problems, particularly related to use of acids during the decomposition of natural phosphates. A basic problem is also the fact that only 15 – 20% of the phosphorus contained in superphosphates is assimilated by plants.The development of methods to process natural phosphates without acid precipitation has potential advantages and in this respect biotechnological processing of natural phosphates in order to obtain organo-mineral fertilizers is very promising. The possibility of bioconverting the phosphorus of natural phosphates by usingAspergillus niger fungi through their deep incubation has been investigated. The investigations aim to achieve a high degree of P2O5 extraction from the phosphates with conversion from a non-utilizable to a utilizable form. The influence of the fungal strain, the kind of nutritive medium and the time of incubation of the process of biological mobilization of the phosphate rock is examined.It was established that the time of incubation, the kind of micro-organisms of theAspergillus niger group, as well as the kind of nutritive medium, influence significantly the process of bioconversion and the conversion of phosphorus from non-utilizable to water-soluble and utilizable for plants form. A maximum degree 90% of phosphorus extraction in the form of water-soluble and citrate-soluble has been reached for 10-day incubation. Physicochemical examinations have been carried out and they have proved that, as a result of the produced organic acids, a process of decomposition of the initial Tunisian phosphorite takes place.  相似文献   

4.
Phosphate rock is a valuable material that is used for the production of large phosphorus chemicals. However, this natural material usually contains some toxic elements such as cadmium (Cd). Cd is a non-nutritive metal regarded as harmful to both humans and the environment. The main toxic effects of Cd on human health are the kidney and renal cortex diseases. Other effects were observed on pulmonary, cardiovascular, and musculoskeletal systems, in addition to including Cd as a human carcinogen. In order to reduce the cadmium content in the phosphate ore, an original method was studied and consists of coupling both leaching and electrodialysis. The effects of process parameters, such as reaction time, nature, and concentration of the extracting agent, liquid/phosphate ore ratio, pH, temperature, and current density, were investigated. The obtained results show that the cadmium extraction from phosphate ore using simple batch leaching does not reduce the cadmium content to the required level. However, the application of leaching- electrodialysis coupled method at optimum current density of 10 mA cm?2 increases the cadmium extraction efficiency up to 84.3%. This synergetic process could be applied to the treatment of phosphate ore containing cadmium.  相似文献   

5.
The residual value of phosphorus from superphosphate, crandallite rock phosphate (Christmas Island C-grade ore), 500°C calcined crandallite rock phosphate (Calciphos) and apatite rock phosphate from Queensland, Australia, was measured in a 6 year field experiment sited on lateritic soil in south-western Australia. Different amounts of each fertilizer were applied at the commencement of the experiment, and either left on the soil surface or mixed through the soil by cultivating to a depth of about 10 cm. Dry matter production of subterranean clover measured in spring (August) and bicarbonate-extractable phosphorus determined from soil samples collected in summer (January–February) were used as indicators of fertilizer effectiveness.The effectiveness values calculated for each fertilizer each year were similar for the treatments that were left on the soil surface and those which were mixed through the soil. The effectiveness of both ordinary and triple superphosphate were similar each year. They were the most effective fertilizers for the duration of the experiment. Using pasture yield as an indicator, the effectiveness of the superphosphates decreased by about 50% from year 1 to year 2, and by a further 10% over the remaining 4 years. Using bicarbonate-extracted soil phosphorus the effectiveness of both superphosphates decreased in a more uniform fashion by about 60% from year 2 to year 6. The effectiveness of all the rock phosphate fertilizers was approximately constant through time. As calculated from yield and bicarbonate-soluble phosphorus values, C-grade ore, Calciphos and the Queensland apatite were respectively 5%, 20% and 7% as effective as freshly applied superphosphate.The proportion of the total phosphorus content present in the rock phosphates which was initially soluble in neutral ammonium citrate was a poor predictor of the effectiveness of the phosphorus from these fertilizers determined using herbage yield or the amount of bicarbonate — soluble phosphorus extracted from the soil.The bicarbonate soil test did not predict the same future production for superphosphate and some of the rock phosphates in years 2 and 3 of the experiment, indicating that different soil test calibration curves are needed for the different fertilizers.  相似文献   

6.
通过对白果坪磷矿床中镉地球化学特征的研究,探讨了对磷块岩矿床中镉的表生地球化学作用过程研究的意义.白果坪磷矿风化磷矿中的镉含量较原生磷矿镉含量高近一倍,表明在地表氧化环境下,镉元素在酸性水溶液的作用下被氧化淋滤发生了明显迁移.镉在磷块岩中的赋存状态为类质同象和吸附态,在风化磷矿石中以吸附态为主.研究镉元素在表生风化作用下的活化-迁移-沉淀富集机理可以为防治磷矿山开采中可能产生的镉污染提供对策.  相似文献   

7.
Trace contents of uranium in various commercial fertilizers e.g. ureas, superphosphates, diammonium phosphates have been determined using fission track etch technique. The uranium content in ureas varies from .05 to 1.3 mg kg–1 whereas in superphosphates it varies linearly with phosphate content.  相似文献   

8.
Long-term experiments have been undertaken to investigate the effects of various types of phosphorus fertilizers on yields, phosphorus uptake and fertilizer conversion in the soil. Optimum effects were obtained from water-soluble phosphate, whereas finely ground soft rock phosphate had little effect even with large amounts of phosphorus fertilizers and with a pH value of the soil of around 5.4. Partially decomposed and sintered phosphates performed well, as did NPK fertilizers (100% water soluble) and Thomas phosphate. The addition of large amounts of phosphorus fertilizers (to cereals, 26.4 kg/ha, to other crops 44 kg/ha) led to yields being increased by 7% and phosphorus extraction being increased by 11%. Smaller amounts of phosphorus fertilizers (13.2 and 17.6 kg/ha) did not have this effect. Increases in the amount of double-lactate-soluble phosphorus in the soil depended on the level of fertilization and did not differ significantly according to the type of phosphorus fertilizer used.  相似文献   

9.
Controlled-release phosphate fertilizers include phosphate rocks (PRs) for direct application, partially acidulated phosphate rocks (PAPRs) and thermal phosphates. Phosphate rocks contain apatite as the main P containing mineral, the composition and the chemical nature of which vary between PRs. Based on the solubility in chemical extractants PRs are broadly grouped into ‘reactive’ and ‘unreactive’. The ‘reactivity’ of PRs is influenced strongly by the extent of carbonate substitution for phosphate in the apatite minerals. Under certain soil and climatic conditions reactive PRs (RPRs) can be used as a source of P for direct application. Partially acidulated phosphate rocks (PAPRs) are produced either by direct partial acidulation of PRs with mineral acids or by mixing PRs with fully acidulated superphosphate reaction mixtures. Partial acidulation of PRs with H3PO4 generally results in higher water soluble P contents than those acidulated with H2SO4. Mixing of RPRs with superphosphate reaction mixtures sometimes results in the preferential consumption of free acid and thereby increases the amounts of residual unreacted PRs. Thermal phosphates are produced by either heating PRs below melting point both in the presence and the absence of silica (calcined phosphates) or heating PRs with silica above melting point (fused phosphate). These phosphates are alkaline in nature and hence suitable for acidic soils.  相似文献   

10.
This review discusses and summarizes the latest reports regarding the agronomic utilization and potential environmental effects of different types of phosphate (P) fertilizers that vary in solubility. The agronomic effectiveness of P fertilizer can be influenced by the following factors: (1) water and citrate solubility; (2) chemical composition of solid water-soluble P (WSP) fertilizers; (3) fluid and solid forms of WSP fertilizers; and (4) chemical reactions of P fertilizers in soils. Non-conventional P fertilizers are compared with WSP fertilizers in terms of P use efficiency in crop production. Non-conventional P fertilizers include directly applied phosphate rock (PR), partially acidulated PR (PAPR), and compacted mixtures of PR and WSP. The potential impacts of the use of P fertilizers from both conventional (fully acidulated) and non-conventional sources are discussed in terms of (1) contamination of soils and plants with toxic heavy metals, such as cadmium (Cd), and (2) the contribution of P runoff to eutrophication. Best practices of integrated nutrient management should be implemented when applying P fertilizers to different cropping systems. The ideal management system will use appropriate sources, application rates, timing, and placement in consideration of soil properties. The goal of P fertilizer use should be to optimize crop production without causing environmental problems.  相似文献   

11.
Two long-term (11 and 12 y) field experiments in south-western Australia are described that measured the relative effectiveness of three rock phosphate fertilizers (C-grade ore, Calciphos and Queensland (Duchess) rock phosphate), single, double and triple superphosphate. The experiments were on established subterranean clover (Trifolium subterraneum) — based pasture that had received large, yearly, applications of single superphosphate for many years before the experiments began so that in the first year the nil phosphorus (P) treatment produced 80 to 90% of the maximum yield. The experiments were conducted using a rotation of one year cereal crop (oats,Avena sativa at one site, and barley,Hordeum vulgare, at the other): 2 y pasture, a typical rotation on farms in the region. Five levels of each P fertilizer were applied every third year with the crop. Grain yield of cereals, P content of grain, pasture yield, and bicarbonate-soluble P extracted from the soil (available P) were used to estimate fertilizer effectiveness values.The three superphosphate fertilizers had identical values of fertilizer effectiveness. Superphosphate was always the most effective fertilizer for producing grain. The rock phosphate fertilizers were one-seventh to one-half as effective per kg P as superphosphate when assessed on the yield or P content (P concentration × yield) of grain within each cropping year. Bicarbonate-extractable soil P values demonstrated that superphosphate was two to fifteen times as effective as the rock phosphate fertilizers. The relationship between grain yield and P content in grain (i.e. the internal efficiency of P use curve) was similar for the different P fertilizers. Thus for all P fertilizers yield was not limited by other factors as it varied solely in response to the P content, which in turn presumably depended on the P supply from the fertilizers.The relative agronomic effectiveness of rock phosphates is greater for marginally P deficient soils than for highly P deficient soils but rock phosphate remains less effective than superphosphate. We conclude that the rock phosphates studied should not be substituted for superphosphate as maintenance fertilizers for soils in Western Australia that are marginally deficient in P. This result is consistent with the results of many field experiments on highly P deficient soils in south-western Australia. These have shown that a wide variety of rock phosphate fertilizers are much less effective than superphosphate in both the short and long term.  相似文献   

12.
Ecophos is a possible alternative phosphorus (P) fertilizer to single and coastal superphosphate for clover pasture (Trifolium subterraneum) on P leaching, sandy, humic podzols in the > 800 mm annual average rainfall areas of south-western Australia. Ecophos and coastal superphosphate are partially acidulated rock phosphates (PARP) fertilizers. Ecophos is made from calcium iron aluminium (crandallite millisite) rock phosphate. Coastal superphosphate is made from apatite. The sandy humic podzols are known to promote extensive dissolution of rock phosphates, including the untreated rock phosphate present in PARP fertilizers. In this field study (early April 1992 to end of October 1994), the effectiveness of the PARP fertilizers was calculated relative to the effectiveness of single superphosphate (relative effectiveness or RE), using yield and P content of dry clover herbage. The RE of the PARP fertilizers varied markedly between assessments, both within and between years, from being much less effective than single superphosphate, to equally or much more efective. This great diversity in RE is attributed to the different extents P can be leached in the soil, depending on seasonal conditions. It is concluded that Ecophos is a suitable alternative P fertilizer for the soil and environment studied.  相似文献   

13.
The application of commercial phosphate fertilizers containing Cd as an impurity is an important source of Cd to agricultural soils. The changes in the Cd status and its bioavailability in soils taken from a field trial were investigated after several years of application of fertilizers with a range of Cd contamination levels to soils. Various soil pH regimes were achieved by liming. The isotopic dilution technique was used to determine both the plant available (L-value) and isotopically exchangeable (E-value) Cd pools in soils. Firstly, we found that the L-values after 10 year of application were significantly higher at pH 5.0 than at pH 6.0, and this was reflected in the increased Cd uptake by wheat at the lower pH. There was no significant effect of the rate of soil Cd application on the L-values. Although long-term use of Cd enriched P-fertilizers increased the total concentration of Cd in soil, the impact on wheat production was insignificant. Most cultivated soils in Norway are maintained at soil pH between 5.5 and 6.5 by frequent liming. That brings up the second interesting finding, the possible impurity of lime used in this experiment. The lime was not analysed, as it was unexpected that liming might raise the total content of soil Cd substantially. That seems, however, to have been the case for this experiment since we find increase of total Cd even in the low-Cd input blocks of the trial.  相似文献   

14.
The residual value of superphosphate and several rock phosphates was measured in three field experiments in Western Australia. The rock phosphates were Christmas Island C-grade ore, calcined C-grade ore (Calciphos) and apatite rock phosphates. The predictive capacity of the Colwell, Olsen and Bray 1 soil tests for phosphate were also evaluated.As measured by yields of variously wheat, oats, barley or clover, the effectiveness of an initial application of superphosphate decreased to about 50% of that of newly applied superphosphate between years 1 and 2, and further decreased to about 20% over subsequent years. At low levels of application, all the rock phosphates were between 10–20% as effective as superphosphate in the year of application for all experiments. Relative to newly applied superphosphate their effectiveness remained approximately constant in subsequent years for two experiments and doubled for the other experiment.The Colwell soil test predicted that the effectiveness of superphosphate decreased to about 45% between years 2 and 3, followed by a more gradual decrease to approximately 15%. At low levels of application, the effectiveness of the rock phosphates as predicted by the Colwell soil test values was initially very low relative to superphosphate (2–30%), and remained low in subsequent years (2–20%). For superphosphate treated soil, the proportion of the added phosphorus extracted generally increased as the level of application increased. By contrast, for rock phosphate treated soil, the proportion of added phosphorus extracted decreased as the level of application increased.For all three experiments there were highly significant positive correlations between amounts of P extracted by the three soil tests. Consequently all soil tests were equally predictive of yield but usually for each soil test separate calibrations between yield and soil test values were required for the different fertilizers and for each combination of fertilizer and plant species and for each year.  相似文献   

15.
Five phosphate rocks varying in formic acid P solubility from 18.9 to 52.7%, expressed as percentage of total P, were acidulated with phosphoric or sulphuric acids to 0, 20%, 33% and 50% of full acidulation and granulated. In an incubation experiment fertilizer granules of diameter 1–2 mm were mixed with two acid soils and after 1 week incubation soil samples were extracted with a 0.5 M NaOH solution. In a dissipation experiment single fertilizer granules of 4 mm diameter were implanted into soil, incubated for 1 and 4 weeks and inorganic P fractionation in the residual granules and the surrounding soil was performed. Dissipated P was greater than the water soluble P content of the partly acidulated phosphate rock fertilizers indicating the dissolution of the non-acidulated phosphate rocks. The amount of P dissipated was related to the initial water soluble P content and to the formic acid solubility of phosphate rocks used for manufacturing the fertilizers. The P dissipated increased with an increase in soil acidity.  相似文献   

16.
Partially acidulated phosphate fertilizers are manufactured either by direct partial acidulation of phosphate rocks (PRs) with sulphuric and/or phosphoric acid (directly acidulated PAPR) or indirectly by mixing reactive phosphate rocks (RPRs) with single superphosphate (SSP-RPR mixture). This form of low cost fertilizer manufacture is suitable for improving the agronomic value of unreactive PRs or production of high analysis fertilizers that can have agronomic values similar to fully acidulated phosphate fertilizers.The solubility characteristics of the directly acidulated PAPRs are affected by the type, composition and concentration of the acid used for acidulation, degree of acidulation, nature and fineness of PR and the method of manufacture. In general, partial acidulation with phosphoric acids which contain minimum amounts of metallic impurities acidulates more PR and results in more soluble P in the product. In the case of SSP-RPR mixtures made by adding RPR to immature SSP, the nature of PR used for SSP manufacture and the time of addition of RPR to ex-den SSP mixture affects the quality of the product. In order to minimize the selective reaction of the RPR with residual acid present in the ex-den SSP reaction mixture, RPR should not be added until PR acidulation (used for SSP) is essentially complete.The agronomic value of partially acidulated phosphate fertilizers is affected by the amount of water soluble P and the solubility of residual PR. None of the single extraction tests such as 2% citric acid, 2% formic acid and neutral ammonium citrate appear to be appropriate as indicators of plant available P in these fertilizers. Double extraction procedures which remove both the soluble P and the residual P have been investigated, but need to be correlated with agronomic data before they can be adopted as quality tests.  相似文献   

17.
《分离科学与技术》2012,47(8):1255-1261
Separation and recovery of cadmium from sulphate leach liquors of spent Ni-Cd batteries using TBP, HDEHP (D2EHPA), EHEHPA (PC 88A or Ionquest 801 or P507) have been investigated in a laboratory scale. Cadmium can be extracted into paraffin waxes from acidic solutions in the temperature range of 55–75°C using different extractants. The influence of various parameters on extraction and stripping were studied in detail. The feasibility of separation of cadmium from nickel using these extractants and their combination was studied. The mixture extractant of EHEHPA and TBP was found to be the best for the separation of Cd and Ni. A three-stage counter-current extraction simulation test for cadmium extraction was carried out at an A/O phase ratio of 4:1 and pH 2.5. More than 99.97% Cd2+ was extracted with the organic phase containing 0.7 mol L?1 EHEHPA and 0.5 mol L?1 TBP, while more than 99.97% nickel was left in the raffinate. The cadmium loaded organic phase was stripped with 2 mol L?1 hydrochloric acid in the stripping stage. The present method can be applied to the separation and recovery of cadmium from acidic leach liquor of spent Ni-Cd batteries or related waste liquor.  相似文献   

18.
ABSTRACT

Cadmium as a highly toxic metal is released into the environment through paper production, metal processing, phosphate fertilizers, insecticides, and treatment of wastewater. Cadmium also inhibits the body activities and is very toxic for kidney and other organisms. In the current study, zinc-based metal–organic framework, zeolitic imidazolate framework (ZIF)-8, was synthesized and modified by dimethylethylenediamine (ZIF-8-mmen) for the removal of cadmium. To optimize the experiments, response surface methodology was applied with three variables including pH, adsorbent dosage, and contact time using central composite design. The optimum conditions for pH, dosage, and time were 2, 0.1 g, and 89 min, respectively, with removal efficiency of 85.38%. The Langmuir isotherm (q m = 1000 mg/g) indicates the monolayer adsorption. The kinetic studies reveal that the Lagergren model was predominant and cadmium was not chemisorbed. Thermodynamic parameters show spontaneous, endothermic, and physisorption processes.  相似文献   

19.
Heavy metal contaminants in inorganic and organic fertilizers   总被引:2,自引:0,他引:2  
Commercial phosphate (P) fertilizers contain small amounts of heavy-metal contaminants which were minor constituents in phosphate rock (PR). Animal manures and sewage sludges (biosolids) are the main organic fertilizers and the latter also may contain heavy-metal contaminants. Heavy metals in biosolids may be found in the inorganic form or may be organically complexed, which could affect their chemical reactions in soil. These heavy metals may accumulate in soil with repeated fertilizer applications. Cadmium (Cd) is the heavy metal of most concern because it may affect human health. Other heavy metals of possible significance are arsenic (As), chromium (Cr), lead (Pb), mercury (Hg), nickel (Ni), and vanadium (V). Some countries have set tolerance limits on heavy-metal additions to soil because their long-term effects are unknown. These limits usually are set for the tillage layer (surface 20–30 cm) of soil where most root activity occurs. Controls on heavy-metal concentrations in sewage biosolids and their maximum total and annual loading rates to soil have been imposed in some countries. Regulations also have been proposed for phased-in limits on maximum heavy metal concentrations permitted in P fertilizers, or they are already in effect. Most of the fertilizer regulations relate Cd limits to P concentrations, so P application rates dictate Cd inputs to soil. Regulations affecting sewage biosolids include a number of heavy metals, while those concerning P fertilizers only include limits on Cd at this time.  相似文献   

20.
The extractlon of cadmium and zinc with di-(2-ethylbexyi)-dithiophosphoric acid(D2EHDTPA)-toluene and D2EHDTPA-trioctyl amine(TOA)-toiuene has investiated. in-frared spectrum analsis,the nuclear magnetic resonance spectrum(NMR) analysis and conductivity measurements confirm that the probable structures of the extracted complexes are CdA2 and ZnA2, Cadmium can be extracted by D2EHDTPA very eui]y. Almost all the cadmium can be extracted, but stripping of cadmium from the organic phase is very difficult. When a mLxture of D2EHDTPA and TOA is used, selective extraction of cadmium from zinc sulfate solution can be achieved. Cad-mium can be easily stripped from the organic phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号