首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
采用硫载体硫化剂4,4′-二硫化二吗啉(DTDM)对三元乙丙橡胶(EPDM)进行活性预处理,研究了活性预处理EPDM/天然橡胶(NR)并用胶的性能,并探讨了活性预处理EPDM对并用胶力学性能影响的机理。结果表明,预处理EPDM/NR并用胶的共硫化程度得到改善,并用硫化胶的力学性能提高;并用硫化胶的耐老化性能优于NR硫化胶,但比未处理EPDM/NR并用硫化胶差;并用胶只存在1个玻璃化温度的转变区,两相的相容性得到改善;在高温动态条件下,EPDM与DTDM发生活性反应,但未生成大量凝胶。  相似文献   

2.
分别采用硫黄硫化、半有效硫化、硫载体硫化、有机过氧化物硫化和复合硫化体系制备三元乙丙橡胶(EPDM)硫化胶,并考察了不同硫化体系对EPDM硫化胶的硫化特性、物理机械性能与电绝缘性的影响.结果表明,EPDM硫化胶交联结构中,过氧化物硫化的EPDM硫化胶具备优异的电绝缘性,但物理机械性能较差;而硫黄硫化的EPDM硫化胶的物...  相似文献   

3.
探讨了三元乙丙橡胶(EPDM)和环氧化天然橡胶(ENR)的共混比、加料顺序、硫化体系对EPDM/ENR共混物的硫化特性、力学性能和耐热空气老化性能的影响。结果表明,共混比不同,共混胶的性能均有差异,且共混物的力学性能低于单组分的线性加和值,但综合比较而言,当EPDM/ENR=40/60时共混胶的力学性能较好;在所研究的四种加料顺序中,以配合剂先与EPDM制成母炼胶后再与ENR共混的这一种加料顺序下所得的共混物硫化胶的力学性能最好;采用半有效硫化体系所制得的共混物硫化胶的力学性能较好。  相似文献   

4.
Peel adhesion behavior of unmodified and modified ethylene propylene diene methylene (EPDM) vulcanizates covulcanized with gum natural rubber (NR) is reported in this paper. Modification of the vulcanizate surface has been carried out by electron beam (EB) irradiation with or without EB sensitizers such as trimethylol propane triacrylate (TMPTA) and tripropylene glycol diacrylate (TPGDA). The doses of both EB and TMPTA/TPGDA have been varied in separate experiments keeping one of them constant. The surface features have been analyzed using several analytical techniques like attenuated total reflection infrared spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, energy dispersive X-ray sulphur mapping, surface energy measurements, free sulphur and gel content analysis. In comparison to its unmodified EPDM vulcanizate counterpart, 100 kGy modified EPDM vulcanizate in presence of 10 wt% TMPTA shows a maximum increase in O/C ratio value from 0.01 to 0.14. High energy irradiation leads to oxidation, grafting, breakdown of cross-links and blooming, which have been quantified. The joint strength of the modified and unmodified vulcanized EPDMs with gum NR has been tested at room temperature and is found to be a strong function of the nature and extent of the modification and surface roughness. The 10 wt% TMPTA soaked EPDM vulcanizate irradiated at 100 kGy has shown the highest peel strength (71% over that of the untreated sample) among all the samples.  相似文献   

5.
Technical properties such as hardness, tensile strength, ultimate elongation, and rebound resilience are popular in quality control, but the trend in these properties shows a generalized picture of the structure–property relations. Test specimens were aged in hot air by systematically varying the time and temperature from 24 to 96 h at 70 to 100°C. For an effective comparison the observed values were plotted as a function of time, temperature, and formulations. The data thus obtained were correlated with shelf‐aging in particular cases, and it was observed that aging at 100°C for 24 h could be used for such formulations. A “sulfur donor” system cured nitrile‐butadiene rubber (NBR) vulcanizate and an ethylene‐propylene‐diene (EPDM) vulcanizate showed the best retention of properties. Although the SEM micrograph of the NBR was in agreement with this observation, the EPDM was not. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2500–2510, 2000  相似文献   

6.
The melt processability and physico‐mechanical properties of blends of natural rubber (NR) and ethylene propylene diene rubber (EPDM) containing different dosages (0–10 phr) of phosphorylated cardanol prepolymer (PCP) were studied in unfilled and china‐clay‐filled mixes. The plasticizing effect of PCP in the blends was evidenced by progressive reduction in power consumption of the mixing and activation energy for melt flow with an increase in the dosage of PCP. The PCP‐modified blend vulcanizates showed higher tensile properties and tear strength despite a decrease in the chemical crosslink density (CLD) index. This is presumably due to the formation of a crosslinked network structure of PCP with the rubbers and improved dispersion of the filler particles in the rubber matrix, as evidenced by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Thermogravimetric analysis showed an increase in thermal stability of the blend vulcanizate in presence of 5 phr of PCP. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5123–5130, 2006  相似文献   

7.
对8个牌号三元乙丙橡胶(EPDM)的微观结构、硫化特性、物理机械性能、耐磨性能及耐老化性能进行了对比.结果表明,EPDM中第3单体亚乙烯基降冰片烯(ENB)质量分数影响了EPDM的硫化速率.8个牌号中EPDM 9950 C的硫化速率最快,EPDM 3722的硫化速率最慢;充油胶EPDM 3666的硫化速率与结构类似的E...  相似文献   

8.
硫化体系对EPDM硫化胶力学性能的影响   总被引:1,自引:1,他引:0  
考察了4,4′-二硫代二吗啉(DTDM),N,N′-间苯撑双马来酰亚胺(HVA-2),甲基丙烯酸镁与硫黄和过氧化二异丙苯(DCP)复合硫化体系对三元乙丙橡胶力学性能的影响。结果表明,与纯硫黄硫化胶相比,DTDM/HVA-2/S复合硫化体系的EPDM硫化胶拉断伸长率及压缩永久变形均较小,而拉伸强度、定伸应力和硬度均较大,耐老化性能较好。甲基丙烯酸盐可明显提高硫黄、过氧化物硫化EPDM硫化胶的交联密度、拉伸强度、定伸应力和拉断伸长率。在甲基丙烯酸镁/炭黑/EPDM胶料中添加等量S i69改性白炭黑和石蜡油后,硫化胶各项力学性能都有明显提高,定伸应力和硬度保持较低水平,耐热空气老化性能有所改善。  相似文献   

9.
EPDM硫化橡胶的热稳定性研究   总被引:5,自引:1,他引:5       下载免费PDF全文
陈绮梅  马晓兵 《橡胶工业》1996,43(9):536-538
对EPDM的过氧化物硫化、硫黄硫化和含硫化合物硫化以及两种不同硫化体系并用的硫化胶热稳定性进行比较,优选热稳定性较好的硫化体系用于产品的制造。采用过氧化二异丙苯(DCP)硫化的硫化胶虽具有极好的热稳定性,但其耐撕裂性能较差,且价格较高。因此可考虑采用DCP的并用硫化体系。当DCP用量为5份,硫黄用量不超过1份时,硫化胶具有较好的热稳定性。  相似文献   

10.
Using a suitable disulfide-based devulcanizing agent, which cleaved the sulfur cross-links in vulcanized rubber at high temperature, devulcanization of gum natural rubber was carried out. High sulfur and medium sulfur, as well as low sulfur–containing rubber vulcanizates were used to study the cleavage of sulfidic bonds. The cure characteristics and mechanical properties of vulcanized natural rubber and revulcanized natural rubber were studied. Thermal properties of the rubber were analyzed by thermogravimetric analysis (TGA), which indicates that the onset degradation temperature further increased on revulcanization with higher amount of disulfide. The properties of the revulcanized natural rubber increased with increasing disulfide concentration, also the mechanical properties of the devulcanized natural rubber were increased by decreasing the sulfur content in the original rubber vulcanizate. From the rheometric study increases in optimum cure time were observed when ground rubber vulcanizates were treated with higher amounts of disulfide. The scanning electronic microscopy (SEM) study suggested the change in failure mechanism as influenced by the type of cross-linking present and the devulcanizing agent used. From infrared (IR) spectroscopy it was observed that the oxidation of the main polymeric chain did not occur at the time of high temperature milling.  相似文献   

11.
Ethylene propylene diene rubber (EPDM) was brominated. The curing behavior and tensile properties of the brominated EPDM (BEPDM) were investigated using a typical sulfur curing formulation. The brominated EPDM was observed to cure with a shorter cure induction time than the unbrominated one. The activation energies (E a) of curing for EPDM and brominated EPDM were found to be approximately 145 kJ/mol and 58 kJ/mol, respectively. Analysis of curing behavior with individual curatives and stress-strain measurements indicates that these significant improvements could be attributed to the role of bromine as a more efficient crosslinking site, forming C—O—C crosslinks. In addition, the bromine also seems to increase the solubility of sulfur in the rubber, promoting sulfur crosslinks which are apparently not observed with the unbrominated EPDM. Consequently, the BEPDM displayed significantly higher tensile strength than the unbrominated one.  相似文献   

12.
将三元乙丙橡胶(EPDM)与环氧化天然橡胶(ENR)共交联改性后,再与天然橡胶(NR)共混,考察了ENR共交联改性EPDM/NR共混胶的硫化特性、硫化胶的物理机械性能、溶胀指数和耐热空气老化性能,并对该硫化胶进行了差示扫描量热分析。结果表明,EPDM经过ENR共交联改性后与NR共混,ENR共交联改性EPDM/NR共混胶的交联程度明显提高,各相达到了同步交联,硫化胶的综合性能得到了显著改善。  相似文献   

13.
Ethylene propylene diene monomer (EPDM) compounds were prepared with different amounts of transgenic soybean oil (TSO), a renewable and reactive plasticizer. For comparison, similar compounds were prepared with petroleum‐based paraffin oil (PO), one of the most common plasticizers for EPDM. The plasticization effects of TSO and of PO were studied by Mooney viscometry, capillary rheometry, differential scanning calorimetry (DSC), and rubber processing analysis (RPA). The results showed that TSO has better plasticization effect than PO on EPDM. In addition, the curing characteristics of the EPDM compounds were studied. TSO was found to react with the curing agent dicumyl peroxide (DCP) during the curing process. Excessive amounts of TSO led to low crosslinking density, which was improved by adjusting the added amount of DCP. The mechanical properties, extraction resistance, and thermal stability of the EPDM vulcanizates plasticized with different amounts of TSO and PO were compared to determine the optimum amount of TSO to replace PO. At the same amount and no more than 15 phr of plasticizer, the TSO‐plasticized EPDM vulcanizate has higher tensile and tear strength, elongation at break, extraction resistance, and thermal stability, but lower Shore A hardness than the PO‐plasticized EPDM vulcanizate. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4457–4463, 2013  相似文献   

14.
In this study the effects of electron beam irradiated poly (tetrafluoroethylene) (IR-PTFE) on the mechanical and tribological properties as well as thermal and solvent aging behavior of carbon black filled nitrile-butadiene rubber vulcanizates were studied. Based on the obtained results, addition of 30phr IR-PTFE reduced mechanical strength about 10%, whereas coefficient of friction desirably reduced up to 60%. It was shown that IR-PTFE significantly improved tribological properties by affecting the adhesion contribution of the friction mechanism. Moreover, formation of IR-PTFE transfer films also contributed to the reduction of coefficient of friction in the long term tests. In addition, it was explained that IR-PTFE enhances the sulfur cross-linking reaction in the vulcanizates by reducing the intensity of carbon black network. Therefore, augmented chemical cross-links compensates the loss of physical cross-links in the carbon black network and keeps the solvent swelling resistance unchanged. Also, IR-PTFE showed positive effects on the solvent aging of the vulcanizates, whereas the thermal aging of vulcanizates was unaffected.  相似文献   

15.
The graft copolymerization of 2‐dimethylamino ethylmethacrylate (DMAEMA) onto ethylene propylene diene mononer rubber (EPDM) was carried out in toluene via solution polymerization technique at 70°C, using dibenzoyl peroxide as initiator. The synthesized EPDM rubber grafted with poly[DMAEMA] (EPDM‐g‐PDMAEMA) was characterized with 1H‐NMR spectroscopy, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The EPDM‐g‐PDMAEMA was incorporated into EPDM/butadiene acrylonitrile rubber (EPDM/NBR) blend with different blend ratios, where the homogeneity of such blends was examined with scanning electron microscopy and DSC. The scanning electron micrographs illustrate improvement of the morphology of EPDM/NBR rubber blends as a result of incorporation of EPDM‐g‐PDMAEMA onto that blend. The DSC trace exhibits one glass transition temperature (Tg) for EPDM/NBR blend containing EPDM‐g‐PDMAEMA, indicating improvement of homogeneity. The physico‐mechanical properties after and before accelerated thermal aging of the homogeneous, and inhomogeneous EPDM/NBR vulcanizates with different blend ratios were investigated. The physico‐mechanical properties of all blend vulcanizates were improved after and before accelerated thermal aging, in presence of EPDM‐g‐PDMAEMA. Of all blend ratios under investigation EPDM/NBR (75/25) blend possesses the best physico‐mechanical properties together with the best (least) swelling (%) in brake fluid. Swelling behavior of the rubber blend vulcanizates in motor oil and toluene was also investigated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
用甲基丙烯酸(MAA)原位改性纳米碳酸钙填充三元乙丙橡胶(EPDM),制备了纳米碳酸钙增强EPDM硫化胶。考察了过氧化二异丙苯(DCP)用量和MAA用量对EPDM硫化性能和物理机械性能的影响,研究了硫化胶的应力弛豫行为。结果表明,MAA的引入降低了EPDM的焦烧时间,但未对硫化速率产生明显影响;EPDM硫化胶具有较好的物理机械性能,当MAA用量为1.2质量份时,其拉伸强度可达25.6 MPa。此外,EPDM硫化胶的应力弛豫程度和速率都随着MAA的加入而增大。  相似文献   

17.
A comparison is made of the composition and properties of the different rubber vulcanizate networks obtained by varying the ratio of sulfur to sulfenamide accelerator and by the thermal aging of vulcanizates containing predominantly polysulfide crosslinks. It is concluded that the changes in network structure which can take place, for example, during the service life of natural rubber tires are not the direct cause of failures of the type associated with rubber fatigue at high temperatures. However, a reduction in the total number of crosslinks can accelerate failure by increasing the amount of heat generated during flexing. More stable networks giving improved resistance to fatigue at high operating temperatures are obtained by the use of higher ratios of accelerator to sulfur than are conventionally employed.  相似文献   

18.
Processing, cure characteristics, and mechanical properties of EPDM rubber containing ground EPDM vulcanizate of known composition were studied. Mooney viscosity increases and Mooney scorch time decreases by the addition of the ground vulcanizate. At higher loadings of the ground rubber, the maximum rheometric torque decreases. On addition of ground waste, stress–strain properties and tear resistance increase, whereas heat buildup marginally increases, resilience marginally decreases, low‐strain modulus remains constant, and abrasion resistance decreases. The interplay between the filler effect of the ground EPDM and the crosslink density changes of the EPDM matrix is believed to be the reason for the variation in mechanical properties. It is believed that sulfur migration occurs from the raw EPDM matrix (R‐EPDM) to the ground waste EPDM (W‐EPDM) particle while accelerator migration occurs from W‐EPDM to R‐EPDM. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3293–3303, 2001  相似文献   

19.
Variation of the crosslink density of a rubber vulcanizate depending on the rubber composition after the thermal aging was studied with single rubber, biblend, and triblend vulcanizates of natural rubber (NR), butadiene rubber (BR), and styrene‐butadiene rubber (SBR). The efficient vulcanization (EV) system was employed to minimize the influence of free sulfur in the vulcanizate on the change of the crosslink density. Thermal aging was performed at 40, 60, and 80°C for 20 days with 5‐day intervals. The crosslink densities of the vulcanizates after the thermal aging increase. For the single rubber vulcanizates, variation of the crosslink density by the thermal aging has the order: SBR > BR > NR. For the biblend vulcanizates, variations of the crosslink densities of the NR/SBR and SBR/BR blends are larger than that of NR/BR blend. Variation of the crosslink density of the vulcanizate increases by increasing the SBR content in the vulcanizate. Variation of the crosslink density of the rubber vulcanizate depending on the rubber composition was explained by miscibility of the blends, combination reaction of the pendent groups, and mobility of the pendent group. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1378–1384, 2000  相似文献   

20.
研究不同牌号乙烯丙烯酸酯橡胶(AEM)及聚酯/聚醚混合型增塑剂种类和用量对硫化胶性能的影响。结果表明:AEM Vamac G硫化胶的耐低温性能较好,而AEM Vamac GLS硫化胶的物理性能、耐老化性能和耐油性能较好,选择并用比为50/50的AEM Vamac G/AEM Vamac GLS并用胶作为主体材料,硫化胶的物理性能、耐油性能和耐低温性能可更好地平衡;添加增塑剂TP-759的硫化胶的耐低温性能较好,添加增塑剂RS-735的硫化胶的耐热老化性能较好,两者耐油性能相当;随着增塑剂用量的增大,硫化胶的耐低温性能提高,拉伸强度降低,拉断伸长率和压缩永久变形增大,油浸泡后体积变化率减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号