首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The phase behaviour of copolymers and their blends is of great interest due to the phase transitions, self‐assembly and formation of ordered structures. Phenomena associated with the microdomain morphology of parent copolymers and phase behaviour in blends of deuterated block copolymers of polystyrene (PS) and poly(methyl methacrylate) (PMMA), i.e. (dPS‐blockdPMMA)1/(dPS‐block‐PMMA)2, were investigated using small‐angle X‐ray scattering, small‐angle neutron scattering and transmission electron microscopy as a function of molecular weight, concentration of added copolymers and temperature. RESULTS: Binary blends of the diblock copolymers having different molecular weights and different original micromorphology (one copolymer was in a disordered state and the others were of lamellar phase) were prepared by a solution‐cast process. The blends were found to be completely miscible on the molecular level at all compositions, if their molecular weight ratio was smaller than about 5. The domain spacing D of the blends can be scaled with Mn by DMn2/3 as predicted by a previously published postulate (originally suggested and proved for blends of lamellar polystyrene‐block‐polyisoprene copolymers). CONCLUSIONS: The criterion for forming a single‐domain morphology (molecularly mixed blend) taking into account the different solubilization of copolymer blocks has been applied to explain the changes in microdomain morphology during the self‐assembling process in two copolymer blends. Evidently the criterion, suggested originally for blends of lamellar polystyrene‐block‐polyisoprene copolymers, can be employed to a much broader range of block copolymer blends. Copyright © 2008 Society of Chemical Industry  相似文献   

2.
The temperature-composition phase diagrams for six pairs of diblock copolymer and homopolymer are presented, putting emphasis on the effects of block copolymer composition and the molecular weight of added homopolymers. For the study, two polystyrene-block-polyisoprene (SI diblock) copolymers having lamellar or spherical microdomains, a polystyrene-block-polybutadiene (SB diblock) copolymer having lamellar microdomains, and a series of polystyrene (PS), polyisoprene (PI), and polybutadiene (PB) were used to prepare SI/PS, SI/PI, SB/PS, and SB/PB binary blends, via solvent casting, over a wide range of compositions. The shape of temperature-composition phase diagram of block copolymer/homopolymer blend is greatly affected by a small change in the ratio of the molecular weight of added homopolymer to the molecular weight of corresponding block (MH,A/MC,A or MH,B/MC,B) when the block copolymer is highly asymmetric in composition but only moderately even for a large change in MH,A/MC,A ratio when the block copolymer is symmetric or nearly symmetric in composition. The boundary between the mesophase (M1) of block copolymer and the homogeneous phase (H) of block copolymer/homopolymer blend was determined using oscillatory shear rheometry, and the boundary between the homogeneous phase (H) and two-phase liquid mixture (L1+L2) with L1 being disordered block copolymer and L2 being macrophase-separated homopolymer was determined using cloud point measurement. It is found that the addition of PI to a lamella-forming SI diblock copolymer or the addition of PB to a lamella-forming SB diblock copolymer gives rise to disordered micelles (DM) having no long-range order, while the addition of PS to a lamella-forming SB diblock copolymer retains lamellar microdomain structure until microdomains disappear completely. Thus, the phase diagram of SI/PI or SB/PB blends looks more complicated than that of SI/PS or SB/PS blends.  相似文献   

3.
Morphologies of polymer blends based on polystyrene‐b‐ polybutadiene‐b ‐poly(methyl methacrylate) (SBM) triblock copolymer were predicted, adopting the phase diagram proposed by Stadler and co‐workers for neat SBM block copolymer, and were experimentally proved using atomic force microscopy. All investigated polymer blends based on SBM triblock copolymer modified with polystyrene (PS) and/or poly(methyl methacrylate) (PMMA) homopolymers showed the expected nanostructures. For polymer blends of symmetric SBM‐1 triblock copolymer with PS homopolymer, the cylinders in cylinders core?shell morphology and the perforated lamellae morphology were obtained. Moreover, modifying the same SBM‐1 triblock copolymer with both PS and PMMA homopolymers the cylinders at cylinders morphology was reached. The predictions for morphologies of blends based on asymmetric SBM‐2 triblock copolymer were also confirmed experimentally, visualizing a spheres over spheres structure. This work presents an easy way of using PS and/or PMMA homopolymers for preparing nanostructured polymer blends based on SBM triblock copolymers with desired morphologies, similar to those of neat SBM block copolymers. © 2017 Society of Chemical Industry  相似文献   

4.
This work aimed at studying the role of poly(phenylene oxide) (PPO) and polystyrene (PS) in toughening polyamide‐6 (PA6)/styrene‐ethylene‐butadiene‐styrene block copolymer grafted with maleic anhydride (SEBS‐g‐MA) blends. The effects of weight ratio and content of PPO/PS on the morphology and mechanical behaviors of PA6/SEBS‐g‐MA/(PPO/PS) blends were studied by scanning electron microscope and mechanical tests. Driving by the interfacial tension and the spreading coefficient, the “core–shell” particles formed by PPO/PS (core) and SEBS‐g‐MA (shell) played the key role in toughening the PA6 blends. As PS improved the distribution of the “core–shell” particles due to its low viscosity, and PPO guaranteed the entanglement density of the PPO/PS phase, the 3/1 weight ratio of PPO/PS supplied the blends optimal mechanical properties. Within certain range, the increased content of PPO/PS could supply more efficient toughening particles and bring better mechanical properties. Thus, by adjusting the weight ratio and content of PPO and PS, the PA6/SEBS‐g‐MA/(PPO/PS) blends with excellent impact strength, high tensile strength, and good heat deflection temperature were obtained. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45281.  相似文献   

5.
In this study, immiscible blends of HDPE and an amorphous glassy polymer were compatibilized with styrene-hydrogenated butadiene block copolymers. The glassy phase consisted of either pure PS or a miscible blend of PS and polyether copolymer (PEC); PEC is similar to poly(2,6-dimethyl-1,4-phenylene oxide) (PPO). The morphology of these two-phase mixtures depended on physical characteristics of the components and the method of fabrication. Suitable copolymers increased the degree of dispersion and minimized heterogeneities resulting from the inherent incompatibility of the individual phases. Further reduction in the phase size and increased adhesion between the components of modified blends were achieved by increasing the composition of PEC in the glassy phase. It was concluded that favorable exothermic mixing between PEC and PS endblocks of the copolymers provided an additional driving force for compatibilization. Results from dynamic mechanical thermal analysis suggests that penetration by the copolymers into the homopolymer phases is not complete.  相似文献   

6.
《国际聚合物材料杂志》2012,61(3-4):695-700
Abstract

The effect of addition of poly (propylene oxide) (PPO) and polystyrene with low molecular weight (LPS) to polystyrene (PS) was investigated blending these polymers in a Haake internal mixer. The PPO and LPS range was established up to 10% by weight. The blends were analysed by differential scanning calorimetry (DSC) and carbon-13 nuclear magnetic resonance spectroscopy at solid state (NMR), using conventional NMR techniques as cross-polarisation/magic angle spinning (CP/MAS) and proton spin-lattice relaxation time in the rotating frame (T 1 H p ). The addition of 1 and 5% of PPO and 5% of LPS to PS made the blends of PS/PPO and PS/LPS more rigid.  相似文献   

7.
Mono‐ and bifunctional poly(phenylene oxide) (PPO) macroinitiators for atom transfer radical polymerization (ATRP) were prepared by esterification of mono‐ and bishydroxy telechelic PPO with 2‐bromoisobutyryl bromide. The macroinitiators were used for ATRP of styrene to give block copolymers with PPO and polystyrene (PS) segments, namely PPO‐block‐PS and PS‐block‐PPO‐block‐PS. Various ligands were studied in combination with CuBr as ATRP catalysts. Kinetic investigations revealed controlled polymerization processes for certain ligands and temperature ranges. Thermal analysis of the block copolymers by means of DSC revealed only one glass transition temperature as a result of the compatibility of the PS and PPO chain segments and the formation of a single phase; this glass transition temperature can be adjusted over a wide temperature range (ca 100–199 °C), depending on the composition of the block copolymer. Copyright © 2005 Society of Chemical Industry  相似文献   

8.
The correlation between morphology, mechanical properties, and micromechanical deformation behavior of the blends consisting of an asymmetric styrene/butadiene star block copolymer (ST2‐S74, total styrene volume content ΦPS = 0.74) and general‐purpose polystyrene (GPPS) was investigated using transmission electron microscopy and uniaxial tensile testing. Addition of 20 wt % of GPPS to the block copolymer resulted in a drastic reduction in strain at break, indicating the existence of critical PS lamella thickness Dc. Above Dc lamellar block copolymers displayed a transition from ductile to brittle behavior, substantiating the mechanism of thin layer yielding proposed for lamellar star block copolymers. The blends showed a variety of deformation structures ranging from classical crazelike zones to those with internal shearlike components. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1208–1218, 2004  相似文献   

9.
Blends of polystyrene (PS) and poly(dimethylsiloxane) (PDMS), with and without diblock copolymers (PS‐b‐PDMS), were prepared by melt mixing. The melt rheology behavior of the blends was studied with a capillary rheometer. The morphology of the blends was examined with scanning electron microscopy. The miscibility of the blends was studied with differential scanning calorimetry. The morphology of PS/PDMS blends was modified by the addition of PS‐b‐PDMS copolymers and investigated as a function of the molar mass of the diblock copolymers, viscosity ratios and the processing conditions. As investigated, the observed morphology of the melt‐blended PS/PDMS pair unambiguously supported the interfacial activity of the diblock copolymers. When a few percent of the diblock copolymers blended together with the PS and PDMS homopolymers, the phase size was reduced and the phase dispersion was firmly stabilized against coalescence. The compatibilizing efficiency of the copolymers was strongly dependent on its molar mass. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2747–2757, 2004  相似文献   

10.
Poly(styrene‐co‐methacrylic acid) (PSMA) and poly(styrene‐co‐4‐vinylpyridine) (PS4VP) of different compositions were prepared and characterized. The phase behavior of these copolymers as binary PSMA/PS4VP mixtures or with poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) as PPO/PSMA or PPO/PS4VP and PPO/PSMA/PS4VP ternary blends was investigated by differential scanning calorimetry (DSC). This study showed that PPO was miscible with PS4VP containing up to 15 mol % 4‐vinylpyridine (4VP) but immiscible with PS4VP‐30 (where the number following the hyphen refers to the percentage 4VP in the polymer) and PSMA‐20 (where the number following the hyphen refers to the percentage methacrylic acid in the polymer) over the entire composition range. To examine the morphology of the immiscible blends, scanning electron microscopy was used. Because of the hydrogen‐bonding specific interactions that occurred between the carboxylic groups of PSMA and the pyridine groups of PS4VP, chloroform solutions of PSMA‐20 and PS4VP‐15 formed interpolymer complexes. The obtained glass‐transition temperatures (Tg's) of the PSMA‐20/PS4VP‐15 complexes were found to be higher than those calculated from the additivity rule. Although, depending on the content of 4VP, the shape of the Tg of the PPO/PS4VP blends changed from concave to S‐shaped in the case of the miscible blends, two Tg were observed with each PPO/PS4VP‐30 and PPO/PS4VP‐40 blend. The thermal stability of the PSMA‐20/PS4VP‐15 interpolymer complexes was studied by thermogravimetry. On the basis of the obtained results, the phase behavior of the ternary PPO/PSMA‐20/PS4VP‐15 blends was investigated by DSC. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Investigation of the Tu (>Tg) relaxation in amorphous polymers of styrene by the technique of torsional braid analysis is reviewed. For the most part the relaxation behaves like the glass transition (Tg) in its dependence on molecular weight, on average molecular weight in binary polystyrene blends, and on composition in a polystyrene homogeneously plasticized throughout the range of composition. Diblock and triblock copolymers also display a T > Tg relaxation above the Tg, of the polystyrene phase. Two results in particular suggest that the Tu relaxation is molecularly based. (1) The Tu temperature is determined by the number average molecular weight for binary blends of polystyrene when both components have molecular weights below Mc. (the critical molecular weight for chain entanglements). (2) Homopolymers, and diblock and triblock copolymers of styrene, have a T > Tg relaxation at approximately the same temperature when the molecular weight of the styrene block is equal to that of the homopolymer.  相似文献   

12.
PA6/PPO 70/30 blends were reactively compatibilized using carboxylated polystyrene (PS) and poly(styrene‐block‐4‐methylstyrene) with various degrees of carboxylation. The high carboxylation of PS (up to about 50%) caused a decrease of dispersed PPO dimensions with a simultaneous deterioration of properties, especially of toughness and elongation. The best mechanical behavior was found for PS with 1% degree of carboxylation and for neat PS. On the other hand, degrees of carboxylation higher than 50% caused an increase in particle size. This was most significant for block copolymers, where a marked change in size and shape occurred, from spherical particles of about 1 μm in size to large, elongated particles about 50 μm long or a similar rough cocontinuous structure. The deteriorated mechanical behavior is tentatively explained by unsuitable properties of the reactively formed compatibilizer and thus of the interface. The enhanced rigidity of highly carboxylated poly(4‐methylstyrene) chains (and its product of grafting with PA6), causing its decreased emulsification ability together with the expected rigid interface, which probably suppresses breakup of the PPO phase, may be responsible for the increase of the dispersed PPO dimensions found. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2273–2280, 2001  相似文献   

13.
The compatibility of blends prepared from random copolymers of p-fluorostyrene and o-fluorostyrene with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and blends of the copolymers with polystyrene (PS) has been examined using differential scanning calorimetry. It was found that compatibility in these systems depends on copolymer composition: copolymers containing from 10 to 38% of p-fluorostyrene are miscible with PPO in all proportions. The thermally induced phase separation in these systems was also studied and the existence of lower critical solution temperatures (LCST) was established for all compatible blends. The copolymers were found to be incompatible with PS regardless of composition.  相似文献   

14.
The miscibility and phase behavior of ternary blends containing dimethylpolycarbonate (DMPC), tetramethylpolycarbonate (TMPC) and poly[styrene‐co‐(methyl methacrylate)] copolymer (SMMA) have been explored. Ternary blends containing polystyrene (PS) instead of SMMA were also examined. Blends of DMPC with SMMA copolymers (or PS) did not form miscible blends regardless of methyl methacrylate (MMA) content in copolymers. However, DMPC blends with SMMA (or PS) blends become miscible by adding TMPC. The miscible region of ternary blends is compared with the previously determined miscibility region of binary blends having the same chemical components and compositions. The region where the ternary blends are miscible is much narrower than that of binary blends. Based on lattice fluid theory, the observed phase behavior of ternary blends was analyzed. Even though the term representing the Gibbs free energy change of mixing for certain ternary blends had a negative value, blends were immiscible. It was revealed that a negative value of the Gibbs free energy change of mixing was not a sufficient condition for miscible ternary blends because of the asymmetry in the binary interactions involved in ternary blends. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
The compatibility and phase morphology of poly(phenylene oxide) (PPO) multicomponent blends with poly(ethylene terephthalate) (PET) and polystyrene (PS) were studied using differential-scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM) methods. The effect of glycidyl methacrylate–styrene copolymer (GMS), as a compatibilizer, on the morphology of the PPO blends has also been studied in detail. The influence of the molecular weight of PET and the synergetic effect of the compatibilizers of GMS and phenoxy (PN) on the morphology were examined. The DSC and DMA results show that two distinct glass transitions corresponding to PET and PPO existed; however, the Tg of PPO shifts toward lower temperature region due to the addition of GMS and PS. The SEM results reveal that PET component exists as dispersed phases in the PPO matrix, while PS is miscible in the PPO matrix. A significant improvement of the compatibility was achieved for the PPO multicomponent blends because of the synergetic effect of GMS and phenoxy. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
This work aims at studying the toughening process of poly(butylene terephthalate) (PBT) through its blends with styrene‐butadiene‐styrene block copolymers (SBS), in the presence of poly(styrene‐ran‐glicydil methacrylate) (PS‐GMA) as reactive compatibilizer. High values of impact strength were attained for PBT/SBS blends without the compatibilizer; however, this improvement is achieved for blends with SBS having similar viscosity compared to PBT, at high SBS content (40 wt %) and for blends prepared under specific processing conditions. The efficiency of the in situ compatibilization of PBT/SBS blends by PS‐GMA was found to be strongly dependent on the SBS and PS‐GMA molecular characteristics. Better compatibilizing results were observed through fine phase morphologies and lower ductile to brittle transition temperatures (DBTT) as the interfacial interaction and stability of the in situ formed compatibilizer are maximized, that is, when the miscibility between SBS and PS‐GMA and reaction degree between PBT and PS‐GMA are maximized. For the PBT/SBS/PS‐GMA blends under study, this was found when it is used the SBS with higher polystyrene content (38 wt %) and with longer PS blocks (Mw = 20,000 g mol?1) and also the PS‐GMA with moderate GMA contents (4 wt %) and with molecular weight similar to the critical one for PS entanglements (Mc = 35,000 g mol?1). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5795–5807, 2006  相似文献   

17.
Poly(styrene-block-ethylene oxide) (PS–PEO) diblock copolymers have been synthesized with predictable block molecular weights and narrow molecular weight distributions. sec-Butyllithium-initiated polymerization of styrene was effected in benzene solution followed by ω-end-group functionalization with ethylene oxide to form the corresponding polymeric lithium alkoxide (PSOLi). Block copolymerization of ethylene oxide initiated by the unreactive PSOLi was promoted by addition of dimethylsulfoxide and either potassium t-butoxide, potassium t-amyloxide or potassium 2,6-di-t-butylphenoxide. Although the PS–PEO block copolymer product contained some poly(ethylene oxide) homopolymer, the poly(ethylene oxide) block n was in good agreement with the calculated value and the molecular weight distribution of the final block was generally narrow (w/n ≤ 1.1). The amount of PEO homopolymer was minimized using potassium 2,6-di-t-butylphenoxide rather than potassium t-alkoxides.  相似文献   

18.
The microphase separation structure in the molten state and the structure formation in crystallization from such ordered melt were investigated for the blends of polystyrene–polyethylene block copolymers (SE) with polystyrene homopolymer (PS) and polyethylene homopolymer (PE) and for the blends consisting of two kinds of SE with different copolymer compositions from each other, using synchrotron small-angle X-ray scattering techniques (SAXS). The copolymer compositions of SE block copolymers employed were 0.34, 0.58 and 0.73 wt. fraction of PE, and their melt morphologies were cylindrical, lamellar and lamellar, respectively. Macrophase separation or the morphology change in the melt occurred depending on the molecular weight and the blend composition, as reported so far. In crystallization from such macrophase-separated and microphase-separated melts, the melt morphology was completely kept for all the blends. Crystallization behavior was also investigated for the blends. The crystallization within the spherical and cylindrical domains surrounded by glassy PS was not observed for SE/PS blends. In the crystallization from the macrophase-separated melt, two exothermal peaks were observed in the DSC measurements, while a single peak was observed for other blends. For the blends with PS, the degree of crystallinity was depressed and the apparent activation energy of crystallization was high, compared to those for the corresponding neat SE. For SE/PE and SE/SE blends, those were changed depending on the blend composition.  相似文献   

19.
Morphology and deformation behavior of binary blends comprising styrene/butadiene block copolymers (polystyrene content, ΦPS∼0.70) having different molecular architectures were studied by means of transmission electron microscopy and tensile testing. In contrast to the binary diblock copolymer blends discussed in literature, the phase separation behavior of the blends investigated was found to be strongly affected by asymmetric molecular architecture. The blends showed macrophase separated grains, in which the structures resembled the microphase morphology of none of the blend components. Unlike the classical rubber-modified or particle-filled thermoplastics, neither debonding at the particle/matrix interface nor the particle cavitation was observed in these nanostructured blends. The microdeformation of the blends revealed plastic drawing of polystyrene lamellae or PS struts dispersed in rubbery matrix and orientation of the whole deformation structures along the strain direction.  相似文献   

20.
The crystallization behavior of semicrystalline PEO homopolymer/triblock PS‐PEO‐PS copolymer blend system, which exhibited “Dry‐Brush” in the melt. A symmetric polystyrene–poly(ethylene oxide)–polystyrene triblock copolymer was blended with PEO homopolymer (h‐PEO) having the same molecular weight as that of the PEO block in the copolymer. Considering the composition of the blend (Wps ≥ 0.8), PEO spheres were formed in the blend. Because of the dry‐brush phase behavior of this blend, h‐PEO added was localized in the PEO microdomains, which increases the domain size without changing the microdomain morphology. The crystallization of PEO block was confined within the microdomains and the crystallization temperature was about 60°C lower than normal. Self‐seeding tests were performed to clarify the nucleation mechanism of the blend. Because the droplets size varies greatly, multicrystallization peaks were witnessed in the self‐seeding process. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号