首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of the finite element method for complex engineering problems is now common. To ease the burden on the engineer the development of smart or adaptive computational methods is now required to model complex problems. In this paper we investigate the development of an adaptive finite element method for fracture-related problems. The adaptive method involves various stages which include the finite element analysis, error estimation/indication, mesh refinement and fracture/failure analysis in a loop. Some simple error estimators, based on stress projection, are used to investigate the adaptive finite element process. Element refinement is based on three schemes; the first and second are a simple and hierarchical refinement scheme with transitioning which avoids the need for constraint equations between element boundaries. Another scheme based on constraint equations between elements is also examined. The energy norm is used to estimate the element error. The software has the ability to introduce a discrete fracture in the structure according to standard fracture analysis practice. Crack tip parameters are calculated using a least-squares fit of the displacements into the asymptotic crack tip displacement field. Some simple examples are used to investigate the adaptive process, its behavior and some of the practical problems encountered. The convergence and equilibrium of the adaptive process, in terms of global error in the energy norm, are investigated. In the example the same problem is analyzed using both a fine computational grid and a coarse one. The coarse mesh is then adapted using the three different procedures available. The estimated error in the solution and the stress intensity are shown against the number of elements and number of iterations. Some further areas of research in adaptive finite element analysis are discussed.  相似文献   

2.
A least-squares spectral collocation scheme for the incompressible Navier–Stokes equations is proposed. Grid refinement is performed by means of adaptive triangular elements. On each triangle the Fekete nodes are employed for the collocation of the differential equation. On the element interfaces continuity of the functions is enforced in the least-squares sense. Equal-order Dubiner polynomials are used to obtain a stable spectral scheme. The collocation conditions and the interface conditions lead to an overdetermined system that can be solved efficiently by least-squares. The solution technique only involves symmetric positive-definite linear systems. The approach is first applied to the Poisson equation and then extended to singular perturbation problems where least-squares have a stabilizing effect. By adaptivity, a suitable decomposition of the domain is found where the boundary layer is well resolved. Finally, the method is successfully applied to the regularized driven-cavity flow problem. Numerical simulations confirm the high accuracy of the proposed spectral least-squares scheme.  相似文献   

3.
An automatic adaptive refinement procedure for the analysis of shell structures using the nine-node degenerated solid shell element is suggested. The basic adaptive refinement principle and the effects of singularities and boundary layers on the convergence rate of the nine-node element used are discussed. A new stress recovery procedure based on the patch convective co-ordinate system concept is developed for the construction of a continuous smoothed stress field over the shell domains. The stress recovery procedure is easy to implement, requires a modest computational effort and needs only local patch information. It can be applied to shells with non-uniform thickness as well as to multi-layered shell structures. The smoothed recovered stress obtained is then used with the Zienkiewicz and Zhu error estimator for a posteriori error estimation during the adaptive refinement analysis. Numerical results which are in good agreement with theoretical predictions are obtained and they indicate that the current adaptive refinement procedure can eliminate the effect of singularities inside the problem domains so that a near-optimal convergence rate is achieved in all the numerical examples. This also indicates that the stress recovery procedure can produce an accurate stress field and as a result the error estimator can reflect the error distribution of the finite element solution. Even though in the current study only one type of element is used in the analysis, the whole adaptive refinement scheme can be readily applied to any other types of degenerated solid element. © 1997 John Wiley & Sons, Ltd.  相似文献   

4.
An adaptive scheme for the boundary element method (BEM), based on an error estimate using a sample point error analysis, is applied to a bending problem for a thin elastic plate. Both the boundary element refinement and relocation, i.e. the h- and r-version adaptive schemes, are implemented by employing the non-dimensional error indicator proposed in the present paper. Effectiveness of the proposed adaptive strategy for the boundary element plate bending analysis is demonstrated through some numerical applications of plate bending.  相似文献   

5.
A posteriori error estimates and an adaptive refinement scheme of first‐order least‐squares meshfree method (LSMFM) are presented. The error indicators are readily computed from the residual. For an elliptic problem, the error indicators are further improved by applying the Aubin–Nitsche method. It is demonstrated, through numerical examples, that the error indicators coherently reflect the actual error. In the proposed refinement scheme, Voronoi cells are used for inserting new nodes at appropriate positions. Numerical examples show that the adaptive first‐order LSMFM, which combines the proposed error indicators and nodal refinement scheme, is effectively applied to the localized problems such as the shock formation in fluid dynamics. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Phase-field modeling, which introduces the regularized representation of sharp crack topologies, provides a convenient strategy for tackling 3D fracture problems. In this work, an adaptive isogeometric-meshfree approach is developed for the phase-field modeling of brittle fracture in a 3D polycrystalline material. The isogeometric-meshfree approach uses moving least-squares approximations to construct the equivalence between isogeometric basis functions and meshfree shape functions, thus inheriting the flexible local mesh refinement scheme from a meshfree method. This refinement scheme is improved by introducing an error estimator that includes both the phase field and its gradient. With the present approach, numerical implementations of the adaptive phase-field modeling that introduces the anisotropy of fracture resistance in polycrystals are proposed. In this way, propagating cracks can be dynamically tracked, and the mesh near cracks is refined in a meshfree manner without requiring a priori knowledge of crack paths. Furthermore, the intergranular and transgranular crack propagation patterns in polycrystalline materials can be simulated by the present approach. A series of numerical examples that deal with the isotropic and anisotropic fracture are investigated to demonstrate the robustness and effectiveness of the proposed approach.  相似文献   

7.
In Part II of this study, an automatic adaptive refinement procedure using the reproducing kernel particle method (RKPM) for the solution of 2D linear boundary value problems is suggested. Based in the theoretical development and the numerical experiments done in Part I of this study, the Zienkiewicz and Zhu (ZZ) error estimation scheme is combined with a new stress recovery procedure for the a posteriori error estimation of the adaptive refinement procedure. By considering the a priori convergence rate of the RKPM and the estimated error norm, an adaptive refinement strategy for the determination of optimal point distribution is proposed. In the suggested adaptive refinement scheme, the local refinement indicators used are computed by considering the partition of unity property of the RKPM shape functions. In addition, a simple but effective variable support size definition scheme is suggested to ensure the robustness of the adaptive RKPM procedure. The performance of the suggested adaptive procedure is tested by using it to solve several benchmark problems. Numerical results indicated that the suggested refinement scheme can lead to the generation of nearly optimal meshes for both smooth and singular problems. The optimal convergence rate of the RKPM is restored and thus the effectivity indices of the ZZ error estimator are converging to the ideal value of unity as the meshes are refined.  相似文献   

8.
A four‐node, quadrilateral smoothing element is developed based upon a penalized‐discrete‐least‐squares variational formulation. The smoothing methodology recovers C1‐continuous stresses, thus enabling effective a posteriori error estimation and automatic adaptive mesh refinement. The element formulation is originated with a five‐node macro‐element configuration consisting of four triangular anisoparametric smoothing elements in a cross‐diagonal pattern. This element pattern enables a convenient closed‐form solution for the degrees of freedom of the interior node, resulting from enforcing explicitly a set of natural edge‐wise penalty constraints. The degree‐of‐freedom reduction scheme leads to a very efficient formulation of a four‐node quadrilateral smoothing element without any compromise in robustness and accuracy of the smoothing analysis. The application examples include stress recovery and error estimation in adaptive mesh refinement solutions for an elasticity problem and an aerospace structural component. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
A widely used approach for the computation of time‐harmonic electromagnetic fields is based on the well‐known double‐curl equation for either E or H , where edge elements are an appealing choice for finite element discretizations. Yet, the nullspace of the curl ‐operator comprises a considerable part of all spectral modes on the finite element grid. Thus standard multilevel solvers are rendered inefficient, as they essentially hinge on smoothing procedures like Gauss–Seidel relaxation, which cannot provide a satisfactory error reduction for modes with small or even negative eigenvalues. We propose to remedy this situation by an extended multilevel algorithm which relies on corrections in the space of discrete scalar potentials. After every standard V‐cycle with respect to the canonical basis of edge elements, error components in the nullspace are removed by an additional projection step. Furthermore, a simple criterion for the coarsest mesh is derived to guarantee both stability and efficiency of the iterative multilevel solver. For the whole scheme we observe convergence rates independent of the refinement level of the mesh. The sequence of nested meshes required for our multilevel techniques is constructed by adaptive refinement. To this end we have devised an a posteriori error indicator based on stress recovery. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, an adaptive refinement procedure using the reproducing kernel particle method (RKPM) for the solution of 2D elastostatic problems is suggested. This adaptive refinement procedure is based on the Zienkiewicz and Zhu (ZZ) error estimator for the a posteriori error estimation and an adaptive finite point mesh generator for new point mesh generation. The presentation of the work is divided into two parts. In Part I, concentration will be paid on the stress recovery and the a posteriori error estimation processes for the RKPM. The proposed error estimator is different from most recovery type error estimators suggested previously in such a way that, rather than using the least-squares fitting approach, the recovery stress field is constructed by an extraction function approach. Numerical studies using 2D benchmark boundary value problems indicated that the recovered stress field obtained is more accurate and converges at a higher rate than the RKPM stress field. In Part II of the study, concentration will be shifted to the development of an adaptive refinement algorithm for the RKPM.  相似文献   

11.
Closed form expressions for the stiffness matrix and a simple error estimator and error indicator are derived for plane straight sided triangular finite elements in elasticity problems. The calculation of the error estimator is performed on an element by element basis, and is found to be very accurate and efficient. In general, the solutions for benchmark problems using the error indicators for selective refinement of the regions show accelerated convergence when compared to the convergence rate of solutions using uniform mesh refinement. Evaluation of the stiffness matrices and error estimators using explicit formulations is found to be several times faster than numerical integration.  相似文献   

12.
This paper addresses the issue of a p‐adaptive version of the generalized finite element method (GFEM). The technique adopted here is the equilibrated element residual method, but presented under the GFEM approach, i.e., by taking into account the typical nodal enrichment scheme of the method. Such scheme consists of multiplying the partition of unity functions by a set of enrichment functions. These functions, in the case of the element residual method are monomials, and can be used to build the polynomial space, one degree higher than the one of the solution, in which the error functions is approximated. Global and local measures are defined and used as error estimator and indicators, respectively. The error indicators, calculated on the element patches that surrounds each node, are used to control a refinement procedure. Numerical examples in plane elasticity are presented, outlining in particular the effectivity index of the error estimator proposed. Finally, the ‐adaptive procedure is described and its good performance is illustrated by the last numerical example. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Global and element residuals are introduced to determine a posteriori, computable, error bounds for finite element computations on a given mesh. The element residuals provide a criterion for determining where a finite element mesh requires refinement. This indicator is implemented in an algorithm in a finite element research program. There it is utilized to automatically refine the mesh for sample two-point problems exhibiting boundary layer and interior layer solutions. Results for both linear and nonlinear problems are presented. An important aspect of this investigation concerns the use of adaptive refinement in conjunction with iterative methods for system solution. As the mesh is being enriched through the refinement process, the solution on a given mesh provides an accurate starting iterate for the next mesh, and so on. A wide range of iterative methods are examined in a feasibility study and strategies for interweaving refinement and iteration are compared.  相似文献   

14.
This paper presents an adaptive refinement strategy based on a hierarchical element subdivision dedicated to modelling elastoplastic materials in transient dynamics. At each time step, the refinement is automatic and starts with the calculation of the solution on a coarse mesh. Then, an error indicator is used to control the accuracy of the solution and a finer localized mesh is created where the user‐prescribed accuracy is not reached. A new calculation is performed on this new mesh using the non‐linear ‘Full Approximation Scheme’ multigrid strategy. Applying the error indicator and the refinement strategy recursively, the optimal mesh is obtained. This mesh verifies the error indicator on the whole structure. The multigrid strategy is used for two purposes. First, it optimizes the computational cost of the solution on the finest localized mesh. Second, it ensures information transfer among the different hierarchical meshes. A standard time integration scheme is used and the mesh is reassessed at each time step. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
An adaptive finite element procedure is developed for modelling transient phenomena in elastic solids, including both wave propagation and structural dynamics. Although both temporal and spatial adaptivity are addressed, the novel feature of the formulation is the use of mesh superposition to produce spatial refinement (referred to as s‐adaptivity) in transient problems. Spatial error estimation is based on superconvergent patch recovery of higher‐order accurate stresses and is used to guide mesh adaptivity, while the temporal error estimation is based on the assumption of linearly varying third‐order time derivatives of the displacement field and is used to adjust the time step size for the HHT‐α variant of the Newmark direct numerical integration method. Spatial adaptivity of the mesh is performed using a hierarchical h‐refinement scheme that is efficiently implemented using a structured version of finite element mesh superposition. This particular spatial adaptivity scheme is extremely fast and consequently makes it feasible to repeatedly update both the mesh and the time increment as required in an adaptive transient analysis. This work represents the initial effort in applying this type of spatial adaptivity to transient problems. Three example problems are given to demonstrate the performance characteristics of the s‐adaptive procedure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
The proposed methodology is based on the use of the adaptive mesh refinement (AMR ) techniques in the context of 2D shape optimization problems analysed by the finite element method. A suitable and very general technique for the parametrization of the optimization problem, using B-splines to define the boundary, is first presented. Then mesh generation, using the advancing frontal method, the error estimator and the mesh refinement criterion are studied in the context of shape optimization problems In particular, the analytical sensitivity analysis of the different items ruling the problem (B-splines. finite element mesh, structural behaviour and error estimator) is studied in detail. The sensitivities of the finite element mesh and error estimator permit their projection from one design to the next one leading to an a priori knowledge of the finite element error distribution on the new design without the necessity of any additional structural analysis. With this information the mesh refinement criterion permits one to build up a finite element mesh on the new design with a specified and controlled level of error. The robustness and reliability of the proposed methodology is checked by means of several examples.  相似文献   

17.
In this paper, we present some examples which illustrate the use of adaptive finite element analysis using a new hierarchical refinement algorithm for 2D quadrilateral elements. Projection type a posteriori error estimators based on a global stress smoothing and a simple stress averaging scheme have been used. The algorithm produces well refined meshes for some simple examples which contain stress singularities and stress concentrations. The convergence of the energy norm error has been found to be improved over a previous simple splitting algorithm.  相似文献   

18.
A simple algorithm is developed for adaptive and automatic h refinement of two-dimensional triangular finite element meshes. The algorithm is based on an element refinement ratio that can be calculated from an a posteriori error indicator. The element subdivision algorithm is robust and recursive. Smooth transition between large and small elements is achieved without significant degradation of the aspect ratio of the elements in the mesh. Several example problems are presented to illustrate the utility of the approach.  相似文献   

19.
《Journal of Modern Optics》2013,60(5):621-636
A simple method for the rapid determination of the coefficients of a monochromatic wave-aberration polynomial for a given object point and a rotationally symmetric system is discussed. The method is appropriate for optimization programs. Sources of error in the scheme are investigated with emphasis placed on the sine condition error and its reduction. Comparison is also made between two different kinds of the universal coefficients: one provides an exact fit to the polynomial, the other a least-squares fit. Test results for real optical systems are given. The superiority of the scheme over previous methods is demonstrated.  相似文献   

20.
This paper presents a novel method for error estimation and h-version adaptive mesh refinement for potential problems which are solved by the boundary element method (BEM). Special sensitivities, denoted as mesh sensitivities, are used to evaluate a posteriori error indicators for each element, and a global error estimator. A mesh sensitivity is the sensitivity of a physical quantity at a boundary node with respect to perturbation of the mesh. The element error indicators for all the elements can be evaluated from these mesh sensitivities. Mesh refinement can then be performed by using these element error indicators as guides.The method presented here is suitable for both potential and elastostatics problems, and can be applied for adaptive mesh refinement with either linear or quadratic boundary elements. For potential problems, the physical quantities are potential and/or flux; for elastostatics problems, the physical quantities are tractions/displacements (or tangential derivatives of displacements). In this paper, the focus is on potential problems with linear elements, and the proposed method is validated with two illustrative examples. However, it is easy to extend these ideas to elastostatics problems and to quadratic elements.The computing for this research has been supported by the Cornell National Supercomputer Facility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号