首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to observe intracellular structures by scanning electron microscopy, excess cytoplasmic matrix must be removed from the fractured surface of cells. Previously we reported an Osmium-DMSO-Osmium method devised for this purpose. This method is very effective in revealing intracellular structures, but requires osmium tetroxide for initial fixation with some consequent disadvantages. In the present study, a revised Osmium-DMSO-Osmium method is reported, in which an aldehyde mixture is used as the initial fixative instead of osmium tetroxide. As fixation is carried out by perfusion in this revised method, better preservation of fine structures is achieved than by the original method, especially in the central nervous tissue which tends to suffer from post-mortem degeneration. Moreover this method can be applied to cytochemical studies of intracellular structures with a scanning electron microscope (SEM). In this study, acid phosphatase of lysosomes is demonstrated in a coloured SEM micrograph.  相似文献   

2.
The fine structure of submandibular glands of mouse were analyzed using light microscopy (LM), high resolution scanning electron microscopy (HRSEM), and transmission electron microscopy (TEM) methods. For LM, the specimens were embedded in Spurr resin, stained by toluidin blue solutions. For TEM, the tissues of submandibular salivary glands were fixed with modified Karnovsky solution and postfixed with osmium tetroxide. For HRSEM, the tissues were fixed with 2% osmium tetroxide solution in 1/15M sodium phosphate buffer (pH 7.4). The samples were immersed successively in dymethylsulphoxide and freeze cracked. The maceration was made in diluted osmium tetroxide for 24-48 h. The samples were examined by high resolution scanning electron microscopy. The intracellular components of acinar and ductal cells revealed clearly the Golgi apparatus, rough endoplasmic reticulum, secretory granules, and mitochondria. The end bulbs of Golgi lamellae and flattened cisterns of rough endoplasmic reticulum showed the luminal surface. A few mitochondria were identified intermingling between the rough endoplasmic reticulum and the mitochondriales cristae in three-dimensional HRSEM images. Secretory granules were numerous and presented different sizes. Small granules of ribosomes were attached on cistern surface, measuring 20-25 nm in diameter. Numerous arranged microvilli were found on the luminal surface of secretory canaliculus. The contact surfaces of acinar cells revealed complicated interdigitations by cytoplasmic processes. The mitochondria of duct cells were disposed vertically and surrounded by basal infoldings of plasma membranes. Basement membrane showed a spongy-like structure having an irregular surface with various strands and meshes of fine collagen fibrils.  相似文献   

3.
The processing of yeast cells for scanning electron microscopy by conventional sequential fixation with glutaralde-hyde and osmium tetroxide and subsequent dehydration and critical point-drying caused pronounced deformation and visible shrinkage in all basidiomycetous and ascomy-cetous yeast strains studied. The mean cell diameter decreased to nearly 60 and 70%, respectively. After an additional sequential fixation with 1% tannic acid and 0–5% uranyl acetate the cell shrinkage was significantly reduced, but the most important result was a considerable reduction of wrinkling and deformation of the yeast cells.  相似文献   

4.
It is been shown by scanning electron microscopy that fixation in glutaraldehyde followed by fixation in osmium tetroxide results in the presence of membrane blisters on the surface of a variety of cells. Fixation in glutaraldehyde alone or osmium tetroxide alone does not result in such extensive artifacts. The blisters, usually 0.2–0.6 μm in diameter, are seen by transmission electron microscopy to be membrane-bound, virtually empty vesicles. It is concluded that the optimum preservation of the cell surface for scanning electron microscopy is provided by fixation in glutaraldehyde alone.  相似文献   

5.
In order to determine the best conditions to carry out quantitative ultrastructural studies in plant specimens, five different fixation techniques, including some of the most reported electron microscopy fixatives (glutaraldehyde-paraformaldehyde, osmium tetroxide, potassium permanganate), were assayed in onion root meristems to check their ability to induce morphometric changes in Golgi apparatus ultrastructure. Although the parameters evaluated showed in all cases the same tendency, values obtained after permanganate fixation were always higher than those found after aldehyde techniques (especially aldehyde-osmium). Aldehyde followed by osmium fixation appears as the most indicated fixation method when accurate quantitative ultrastructural studies are to be developed.  相似文献   

6.
Cells were cultivated on transparent conductive substrates, glass slides coated with indium oxide; individual cells were marked with a diamond indentor. Cell cultures were frozen (–15°C), thawed, and then stained with fluorescent dyes to determine cell damage. The marked cells were examined by phase contrast, fluorescence, and Nomarski DIC microscopy. After aldehyde and osmium tetroxide fixation, the cell preparations were sequentially treated with tannic acid, uranyl acetate, and lead citrate. The same marked cell could be sequentially studied by light microscopy (LM; in water immersion conditions), scanning electron microscopy (SEM; after dehydration and critical point drying), and transmission electron microscopy (TEM; after embedding of cell samples in epoxy resin and laser marking of the cell previously marked with a diamond indentor). The method used ensures good preservation of cell morphology, cell surface relief, and intracellular structures. The treatment used renders the cells conductive and permitted SEM of uncoated culture cells on conductive substrates.  相似文献   

7.
Detailed examination of subcellular structures in three dimensions (3D) by high resolution scanning electron microscopy (HRSEM) is now possible due to improvements in the design of the scanning electron microscope and the introduction of methods of specimen preparation using chemical removal of the cytosol and cytoskeleton by dilute osmium tetroxide. Cells which have been fixed, frozen, cleaved, thawed, and subjected to cytosol extraction display intact intracellular structures in 3D including nuclear chromatin, endoplasmic reticulum, mitochondria, and the Golgi complex at a resolution close to that of conventional biological transmission electron microscopy (TEM). Small changes in the 3D structure of subcellular components can be conveniently examined in this way in development, in a variety of physiological processes and in disease. Broad areas of the specimen can be quickly surveyed by HRSEM since sectioning is not required and specimens of comparatively large size (up to 5 mm3) can be placed in the microscope. Extraction of the cytosol with dilute osmium tetroxide (OsO4) exposes subcellular structures in relief, permitting their examination in 3D from several aspects. However, the OsO4 extraction technique is limited, since significant intracellular structures, such as the cytoskeleton, vesicles, and antibody binding sites can be removed or inactivated during the cytosol removal steps.  相似文献   

8.
The present study uses mainly scanning electron microscopy to demonstrate the three-dimensional internal cell structures of rat olfactory epithelial cells. The aldehyde-prefixed osmium-DMSO-osmium (AODO) method devised by Tanaka and Mitsushima (1984) was applied to the present study to disclose intracellular structures such as endoplasmic reticulum, mitochondria, Golgi apparatus, and lysosomes. The spatial distribution pattern of these structures in olfactory and supporting cells is discussed, paying special attention to the formation of lipofuscin-like granules present in aged rats.  相似文献   

9.
The osmium maceration method with scanning electron microscopy (SEM) enabled to demonstrate directly the three‐dimensional (3D) structure of membranous cell organelles. However, the polarity of the Golgi apparatus (that is, the cistrans axis) can hardly be determined by SEM alone, because there is no appropriate immunocytochemical method for specific labelling of its cis‐ or trans‐faces. In the present study, we used the osmium impregnation method, which forms deposits of reduced osmium exclusively in the cis‐Golgi elements, for preparation of specimens for SEM. The newly developed procedure combining osmium impregnation with subsequent osmium maceration specifically visualised the cis‐elements of the Golgi apparatus, with osmium deposits that were clearly detected by backscattered electron‐mode SEM. Prolonged osmication by osmium impregnation (2% OsO4 solution at 40°C for 40 h) and osmium maceration (0.1% OsO4 solution at 20°C for 24 h) did not significantly impair the 3D ultrastructure of the membranous cell organelles, including the Golgi apparatus. This novel preparation method enabled us to determine the polarity of the Golgi apparatus with enough information about the surrounding 3D ultrastructure by SEM, and will contribute to our understanding of the global organisation of the entire Golgi apparatus in various differentiated cells.  相似文献   

10.
When a new approach in microscopy is introduced, broad interest is attracted only when the sample preparation procedure is elaborated and the results compared with the outcome of the existing methods. In the work presented here we tested different preparation procedures for focused ion beam (FIB) milling and scanning electron microscopy (SEM) of biological samples. The digestive gland epithelium of a terrestrial crustacean was prepared in a parallel for FIB/SEM and transmission electron microscope (TEM). All samples were aldehyde-fixed but followed by different further preparation steps. The results demonstrate that the FIB/SEM samples prepared for conventional scanning electron microscopy (dried) is suited for characterization of those intracellular morphological features, which have membranous/lamellar appearance and structures with composition of different density as the rest of the cell. The FIB/SEM of dried samples did not allow unambiguous recognition of cellular organelles. However, cellular organelles can be recognized by FIB/SEM when samples are embedded in plastic as for TEM and imaged by backscattered electrons. The best results in terms of topographical contrast on FIB milled dried samples were obtained when samples were aldehyde-fixed and conductively stained with the OTOTO method (osmium tetroxide/thiocarbohydrazide/osmium tetroxide/thiocarbohydrazide/osmium tetroxide). In the work presented here we provide evidence that FIB/SEM enables both, detailed recognition of cell ultrastructure, when samples are plastic embedded as for TEM or investigation of sample surface morphology and subcellular composition, when samples are dried as for conventional SEM.  相似文献   

11.
Internal viewing of the cellular organization of hyphae by scanning electron microscopy is an alternative to observing sectioned fungal material with a transmission electron microscope. To study cytoplasmic organelles in the hyphal cells of fungi by SEM, colonies were chemically fixed with glutaraldehyde and osmium tetroxide and then immersed in dimethyl sulfoxide. Following this procedure, the colonies were frozen and fractured on a liquid nitrogen-precooled metal block. Next, the fractured samples were macerated in diluted osmium tetroxide to remove the cytoplasmic matrix and subsequently dehydrated by freeze substitution in methanol. After critical point drying, mounting, and sputter coating, fractured cells of several basidiomycetes were imaged with field-emission SEM. This procedure produced clear images of elongated and spherical mitochondria, the nucleus, intravacuolar structures, tubular- and plate-like endoplasmic reticulum, and different types of septal pore caps. This method is a powerful approach for studying the intracellular ultrastructure of fungi by SEM.  相似文献   

12.
Kidney tissue double fixed in glutaraldehyde and osmium tetroxide and embedded in epoxy resin by standard techniques used for transmission electron microscopy was cut into section 1 micron or more thick and surface-etched by an oxygen plasma. Etching caused ash residues (possibly composed partly or organo-metallic complexes) of membranes and other etch resistant cell components to emerge as recognizable structures projecting upward from the surrounding embedment which was combusted and removed as volatile products. using the secondary electron mode for image formation, structural features of cells which could be imaged with clarity with the scanning electron microscopy included: profiles of peripheral and in-folded plasma membranes, the nuclear envelope and profiles of cut mitochondrial matrix granules, cristae and the outer limiting membranes. Resolution was better than that obtainable from most other methods of specimen preparation currently being used in scanning electron microscopy for viewing the internal structures of cells or organelles in bulk samples of tissue.  相似文献   

13.
A combined technique of the rapid freezing, freeze substitution–fixation method and the osmium–DMSO-osmium method was devised. By this combined method we clearly observed the architecture of intracellular components in three dimensions. Morphological characteristics were generally similar to those of tissue prepared by the osmium–DMSO-osmium method but different in some respects. Mucigen droplets in intestinal goblet cells, for example, appeared as separated spheres, while in specimens prepared by chemical fixation they were observed as a mass of fused droplets. In the Golgi complex, all cisternae were extremely flat, although they usually dilated on the cis side after chemical fixation. Particles on the mitochondrial tubules of liver cells were well distinguished. They were mushroom shaped, as are those observed by negative staining. The combined method, that is, the rapid freezing, osmium–DMSO-osmium method, is thought to be effective for studying the true structure of intracellular components by scanning electron microscopy.  相似文献   

14.
A quick-freeze, freeze-substitution method is described which employs glutaraldehyde as well as osmium tetroxide (OsO4) in a ‘double-fixation’ protocol comparable to that used for conventional transmission electron microscopy. Cultured cells are quick-frozen in Freon 22 and freeze-substituted in an ethanolic solution of glutaraldehyde. Specimens destined for TEM are postfixed in OsO4 in acetone, embedded in Epon-Araldite, and sectioned. This method yielded ultrastructural preservation which was comparable to that obtained from methods employing OsO4 alone as a freeze-substitution fixative. However, if glutaraldehyde is used alone as a freeze-substitution fixative, specimens can be processed for immunocytochemistry without additional treatment with permeabilizing agents.  相似文献   

15.
Scanning electron microscopy (SEM) is commonly used in the analysis of scaffolds morphology, as well as cell attachment, morphology and spreading on to the scaffolds. However, so far a specific methodology to prepare the alginate hydrogel (AH) scaffolds for SEM analysis has not been evaluated. This study compared different methods to fix/dehydrate cells in AH scaffolds for SEM analysis. AH scaffolds were prepared and seeded with NIH/3T3 cell line; fixed with glutaraldehyde, osmium tetroxide, or the freeze drying method and analyzed by SEM. Results demonstrated that the freeze dried method interferes less with cell morphology and density, and preserves the scaffolds structure. The fixation with glutaraldehyde did not affect cells morphology and density; however, the scaffolds morphology was affected in some level. The fixation with osmium tetroxide interfered in the natural structure of cells and scaffold. In conclusion the freeze drying and glutaraldehyde are suitable methods for cell fixation in AH scaffold for SEM, although scaffolds structure seems to be affected by glutaraldehyde. Microsc. Res. Tech. 78:553–561, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
The feasibility of plasma coating of a thin osmium layer for high‐resolution immuno‐scanning electron microscopy of cell surfaces was tested, using Drosophila embryonic motor neurones as a model system. The neuro‐muscular preparations were fixed with formaldehyde and labelled with a neurone‐specific antibody and 10 or 5 nm colloidal gold‐conjugated secondary antibodies. The specimens were post‐fixed with osmium tetroxide and freeze‐dried. Then they were coated with a 1–2 nm thick layer of osmium using a hollow cathode plasma coater. The thin and continuous coating of amorphous osmium gave good signals of gold particles and fine surface structures of neurites in backscattered electron images simultaneously. This method makes it possible to visualize the antigen distribution and the three‐dimensionally complex surface structures of cellular processes with a resolution of several nanometres.  相似文献   

17.
A new preparation method is introduced to reveal intracellular structures in the scanning electron microscope and its application to mitotic cells in root meristems of Vicia faba is demonstrated. The root tips are fixed with a mixture of formaldehyde and glutaraldehyde and the fixed tissues are frozen and fractured in liquid nitrogen. They are then incubated successively in dilute solutions of aldehyde (formaldehyde or glutaraldehyde) and osmium tetroxide. By this treatment, the excess cell-matrix is removed from the fractured surface of the cell, and a deep view into the cell-interior can be obtained with the scanning electron microscope. Varied levels of substructure are observed on the surface of chromosomes.  相似文献   

18.
Dimensions of tissues fixed in glutaraldehyde-osmium tetroxide mixture, osmium tetroxide and uranyl acetate and then dehydrated in 2,2-dimethoxypropane (DMP) were measured using transmission and scanning electron microscopy. Rat cardiac muscle, kidney and other tissues were examined in this study. The mean dimensions of characteristic ultrastructural features of material prepared by this method are similar or larger than those reported in the literature for conventionally processed samples. Critical point drying of specimens dehydrated with DMP does not produce abnormal shrinkage. Simultaneous primary fixation of lipids and proteins in a glutaraldehyde osmium tetroxide mixture and omission of the water wash after uranyl acetate appear to be important in stabilizing the tissue for rapid dehydration. The rapid reaction of DMP and water yielding the products acetone and methanol does not appear to denature tissue components to a greater extent than conventional solvent exchange dehydration.  相似文献   

19.
Cellular composition of the adult zebrafish (Danio rerio) optic tectal cortex was examined in this study. Morphological techniques such as 1 μm thick serial plastic sections stained with osmium tetroxide and toluidine blue, modified rapid Golgi silver impregnation, GFAP immunohistochemistry, confocal microscopy, as well as scanning and transmission electron microscopy were used. Neuronal and glial components are described and the layers of the cortex are revisited. Specific neuronal arrangements as well as unique glial/ependymal cells are described. A three dimensional rendering of the astrocytic fiber arrangement in the marginal zone is presented and a composite drawing summarizes the cellular composition of the optic tectum.  相似文献   

20.
Two methods adapted from biological microscopy are described for a new application in imaging the morphology of rubbery latex particles. In the first method, a drop of latex is frozen in liquid nitrogen, sectioned with a diamond knife and vapour-stained with osmium tetroxide, then viewed by transmission electron microscopy. When applied to latexes made by emulsion polymerization of methyl methacrylate in a natural rubber latex seed, inclusions are clearly visible. A chemical fixation method is then described for imaging the morphology of such rubbery latex particles. Glutaraldehyde is added to the latex, followed by osmium tetroxide. The sample is then dehydrated in ethanol, epoxy resin added, and the sample cured, ultramicrotomed, and imaged with transmission electron microscopy. An inclusion morphology is again clearly seen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号