首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 460 毫秒
1.
The effect of the load type (tension and compression) in quasi-static and of the applied mean stress in fatigue tests on the mechanical behaviour and on the damage mechanisms in unidirectional (UD) carbon/epoxy laminates has been studied in combination with the influence of fibre volume content. Results show that the fibre volume content increases the mechanical properties in tension–tension fatigue tests for all tested angles 0°, 45° and 90°. The tensile damage mechanisms of off-axis specimens depend on the fibre volume content and change from matrix cracking and matrix–fibre debonding to fibre-pull out with an increasing amount of fibres as investigated in detail in a previous work. In tension–compression tests, higher fibre volume contents are only beneficial in fatigue tests at angles of 0° and 45°. Fatigue strengths of UD 90° specimens in tension–compression tests are not significantly improved by the fibre volume content which can be ascribed to breakage of entire fibre bundles and crushed fibres on the fracture surfaces.  相似文献   

2.
The long term behaviour of ±45°-angle-ply laminates of carbon/epoxy was studied. Due to the absence of 0°-layers angle-ply laminates are subject to cyclic creep. To investigate the time dependent behaviour, creep tests and constant amplitude fatigue tests at different stress ratios were performed. The assumption that the extent of creep depends on the fatigue mean stress was verified and the interaction between creep and fatigue was determined. Based on creep strain data a general fatigue damage metric was defined and conservative service times were estimated.  相似文献   

3.
Composite materials have increasing success in engineering application. To extend their usage to higher temperatures, specially adapted polymer resins must be used. Polyimide (PI) and polyethersulphone (PES) are among the candidate materials for service at high temperatures. The mechanical behaviour of the PI and PES matrix systems under different temperatures, the resulting properties and the damage and failure, under static as well as fatigue loading, are investigated in the present study together with unidirectional laminates of aligned short fibres in the 0° or 90° direction. The room-temperature results are compared to a conventional epoxy resin.  相似文献   

4.
Internal fixation for bone fractures with rigid metallic plates, screws and pins is a proven operative technique. However, refracture’s have been observed after rigid internal fixation with metal plates and plate fixation has been known to cause localised osteopenia under and near the plate. In the present study, resorbable composites comprising a PLA matrix reinforced with iron doped phosphate glass fibres were investigated. Non-woven random mat laminates of approximately 30% and 45% fibre volume fraction (Vf) were produced, along with unidirectional and 0°–90° samples of approximately 20% Vf. The non-woven composite laminates achieved maximum values of 10 GPa modulus and 120 MPa strength. The 0–90o samples showed unexpectedly low strengths close to matrix value (~50 MPa) although with a modulus of 7 GPa. The UD specimens exhibited values of 130 MPa and 11.5 GPa for strength and modulus respectively. All the modulus values observed were close to that expected from the rule of mixtures. Samples immersed in deionised water at 37°C revealed rapid mechanical property loss, more so for the UD and 0–90o samples. It was suggested that continuous fibres wicked the degradation media into the composite plates which sped up the deterioration of the fibre-matrix interface. The effect was less pronounced in the non-woven random mat laminates due to the discontinuous arrangement of fibres within the composite, making it less prone to wicking. Random mat composites revealed a higher mass loss than the UD and 0°–90° specimens, it was suggested this was due to the higher fibre volume fractions of these composites and SEM studies revealed voidage around the fibres by day 3. Studies of pH of the degradation media showed similar profiles for all the composites investigated. An initial decrease in pH was attributed to the release of phosphate ions into solution followed by a gradual return back to neutral.  相似文献   

5.
A model has been developed for the modulus reduction of cross-ply Kevlar laminates under static loading as a function of applied strain. The effects of strain-rate and temperature have also been considered. The ‘stiffening’ of Kevlar fibres and Kevlar fibre-epoxy (KFRP) laminates under creep or fatigue conditions has been modelled using a kinetic approach. This has enabled stiffening effects to be subtracted out of the residual modulus-with-cycles behaviour of cross-ply KFRP laminates under fatigue loading, leaving a modulus-reduction-with-cycles curve which reflects the damage due to matrix cracking. The analyses compare well with experimental data reported in Part 1.  相似文献   

6.
The influence of the ply stacking sequence on the impact resistance and subsequent O-tension fatigue performance of carbon fibre laminates has been investigated. Drop-weight impact tests were conducted on a range of 16 ply carbon fibre laminates with either all non-woven plies or mixtures of woven and non-woven plies. Damaged coupons were tested in O-tension fatigue for up to 106 cycles, scanned using an ultrasonic probe and then loaded in tension until failure.The impact resistance and subsequent fatigue performance have been found to be sensitive to the ply stacking sequence. The non-woven composites showed a marked sensitivity to impact loading, but increases in residual static strength were noted after cycling. The inclusion of a woven fabric served to improve the impact resistance of the laminates. Fatigue cycling resulted in considerably improved residual static strengths; by 106 cycles any effect of the impact damage had been removed.  相似文献   

7.
《Composites Part A》2007,38(6):1612-1620
The present paper studies the flexural behaviour of hand manufactured hybrid laminated composites with a hemp natural fibre/polypropylene core and two glass fibres/polypropylene surface layers at each side of the specimen. When compared with full glass fibres reinforced polypropylene laminates, the hybrid composites have economical, ecological and recycling advantages and also specific fatigue strength benefits. Static and fatigue tests were performed in three point bending for both laminates to evaluate flexural strength properties and fatigue behaviour. Fatigue damage was measured in terms of the stiffness loss. Failure sites and mechanisms were evaluated through microscopy studies and a 3D numerical analysis using finite element method.  相似文献   

8.
The present paper develops a stiffness-based model to characterize the progressive fatigue damage in quasi-isotropic carbon fiber reinforced polymer (CFRP) [90/±45/0] composite laminates with various stacking sequences. The damage model is constructed based on (i) cracking mechanism and damage progress in matrix (Region I), matrix-fiber interface (Region II) and fiber (Region III) and (ii) corresponding stiffness reduction of unidirectional plies of 90°, 0° and angle-ply laminates of ±45° as the number of cycles progresses. The proposed model accumulates damages of constituent plies constructing [90/±45/0] laminates by means of weighting factor η 90, η 0 and η 45. These weighting factors were defined based on the damage progress over fatigue cycles within the plies 90°, 0° and ±45° of the composite laminates. Damage model has been verified using CFRP [90/±45/0] laminates samples made of graphite/epoxy 3501-6/AS4. Experimental fatigue damage data of [90/±45/0] composite laminates have fell between the predicted damage curves of 0°, 90° plies and ±45°, 0/±45° laminates over life cycles at various stress levels. Predicted damage results for CFRP [90/±45/0] laminates showed good agreement with experimental data. Effect of stacking sequence on the model of stiffness reduction has been assessed and it showed that proposed fatigue damage model successfully recognizes the changes in mechanism of fatigue damage development in quasi-isotropic composite laminates.  相似文献   

9.
Ti/CFRP (titanium/carbon fibre reinforced polymer) fibre metal laminates (FMLs) are composed of titanium sheets and carbon fibres reinforced PMR (polymerization of monomeric reactants) type polyimide resin. Due to the outstanding heat resistance of the material, it can be used in hypersonic aircraft applications. Fatigue cracks in the metal layer and delamination at metal/fibre interface may occur in long‐term high‐temperature use processes. However, the behaviour of the fatigue failure at high temperatures has not been investigated. A temperature‐dependent equation has not been presented to predict the crack growth behaviour at high temperatures. In this study, to investigate the crack propagation and delamination behaviours, fatigue crack growth rate tests using tension‐tension loads at 25°C, 80°C, 120°C, and 150°C were conducted in accordance with ASTM E647‐15e1. The results indicated that the variation in fatigue crack growth rate could be described by a modified temperature‐dependent Paris equation. Interfacial strength and tensile strength may influence fatigue failure at high temperatures. Hence, these strength values were also obtained to analyse the mechanism of fatigue behaviour. The delamination area increased exponentially with temperature due to the weakening of the Ti/CFRP interface, and delamination was invariably generated on the microcracks of the titanium layers.  相似文献   

10.
In the present work, the influence of manufacturing induced voids on damage mechanisms at the microscopic scale was analysed on [45/−45/0]s laminates subjected to tension fatigue loading. Microscopic observations of the top surface of the 45° ply revealed that the first event of damage at the microscopic scale was the initiation of multiple micro-cracks in the matrix between the fibres, located preferentially in correspondence of the voids in that layer. The subsequent coalescence of these micro-cracks gave rise to the formation of a crack propagating in the 45° fibres direction. This is qualitatively the same scenario observed in void-free specimens in a recent work by the authors, thus confirming that the same crack initiation criterion can be applied in the absence and presence of voids. In addition, the micro-scale damage is shown to evolve faster and therefore off-axis cracks to initiate earlier and in a larger quantity in the presence of voids.  相似文献   

11.
With increasing application of carbon fibre reinforced plastic laminates (CFRP) the fretting fatigue properties become more and more important. In the case of fretting against the load-bearing 0°-fibres a reduction in fatigue life of about three orders of magnitude can be observed as a result of wear of the fretting pads on the carbon fibres. However, fretting against ±45°-plies protects the 0°-fibres and causes no reduction in fatigue life by comparison with plain fatigue.  相似文献   

12.
The influence of plasticity and viscous effects on the fatigue behaviour of off-axis C/PPS laminates was investigated at temperatures higher than glass transition temperature. The obtained results clearly show that creep and fatigue are mutually influencing phenomena. Compared to the reference fatigue behaviour (with no prior loading), the fatigue life can be significantly extended with prior creep depending on loading conditions. Indeed, the strain accumulation seems to slow down after a long time creep preload, as if the time-dependent mechanisms were “evacuated” during this preload. The same conclusion can be drawn for the damage accumulation when the prior creep stresses are higher than the damage threshold or when the hold time is long enough, inducing significant plastic deformations. In angle-ply laminates, such deformations are associated with the reorientation of fibres. They contribute to the reduction of stress intensities, which results in increasing both fatigue life and maximum strain ɛmax at failure during fatigue loadings.  相似文献   

13.
This paper investigates the effect of fibre volume fraction on the fatigue behaviour and damage mechanisms of carbon/epoxy laminates. Epoxy resin and unidirectional carbon/epoxy specimens with two different fibre volume fractions are tested under quasi-static tensile and tension–tension fatigue loads at angles of 0°, 45° and 90°. Fracture surfaces are studied with scanning electron microscopy. The results show that stiffness and strength increase with increasing fibre volume fractions. The damage behaviour of off-axis specimens changes with increasing fibre volume content and the height of the applied cyclic load. While matrix cracking and interfacial debonding are dominating damage mechanisms in specimens with low fibre content, fibre bridging and pull out are monitored with increasing fibre content. The higher the applied load in fatigue tests transverse to fibre direction, the more similar behave specimens with different fibre volume fractions.  相似文献   

14.
This paper aims at investigating the hybridisation effect on the diffusion kinetic and the tensile mechanical behaviour of flax–glass fibres reinforced epoxy composites. For this purpose, hybrid composites composed of flax and glass fibre laminates with different stacking sequences were consolidated by compression moulding and subjected to environment ageing. The obtained results show that the water uptake and the diffusion coefficient are clearly reduced by the addition of glass fibre layers in flax laminate. The ageing conditions performed show that the flax–glass hybridisation presents a positive effect in a wet environment at low temperatures (∼20 °C) in the Young’s modulus and the tensile strength. For example, the Young’s modulus fell by 50% and 41% for hybrid laminates with 6% and 11% of glass fibres, and by 67% for the Flax laminate. However, the flax–glass hybridisation was not necessarily a relevant choice when the hybrid laminates were exposed in a wet environment at high temperatures. Indeed, at 55 °C, this hybridisation had a negative effect on the tensile strength and on the specific tensile strength.  相似文献   

15.
In this study we investigate the tensile behaviour of unidirectional and cross-ply composites reinforced with ductile stainless steel fibres and modified adhesion to the epoxy matrix. Results show that annealed stainless steel fibres have a potential in designing tough polymer composites for structural applications. The stiffness of the UD composites made from these fibres is 77GPa combined with the strain-to-failure between 15% and 18% depending on the level of adhesion. Silane treatments were used to modify the adhesion. By treating the stainless steel fibres with different silane coupling agents, an increase of 50% in the transverse 3-point-bending strength was realised. Increasing the adhesion by 50% leads to a higher tensile strength and strain-to-failure in both UD and cross-ply laminates and a higher in-situ strength of the 90° plies. It also delays formation of matrix cracks and hinders growth of debonding.  相似文献   

16.
Carbon‐fibre‐reinforced polymers (CFRP) structures offer enhanced lightweight potential in comparison with monolithic metallic concepts. Brittle failure behaviour and the insufficient level of electrical conductivity limit the lightweight potential of composites. One promising new approach to solve these issues is the additional integration of metal fibres. Structural components are subjected to cyclic loads during their lifetime. Therefore, the present study focuses on the influence of additional steel fibre reinforcement on the fatigue behaviour of CFRP laminates. Magnetic properties are determined because of the deformation‐induced phase transformation of the chosen austenitic steel fibres, which are also applied as intrinsic damage sensors. Interrupted fatigue tests are carried out accompanied by scanning electron microscopy to obtain differences in failure mechanisms. Beside a detailed overview of the steel fibre influence on the fatigue properties of conventional CFRP structures, the functional evidence of a new method for nondestructive testing by a magnet inductive measuring device is shown.  相似文献   

17.
Abstract

The present paper is concerned with the fatigue behaviour ofcarbon-epoxy laminates with embedded optical fibres subjected to bending loads. The main goal of this investigation was to evaluate quantitatively the effect of the presence of optical fibres within the host structure on its whole fatigue behaviour. Two optical fibre positions were investigated: in the mid-plane of the laminate and near the surface subjected to loading. Two distinct geometries of the ply stacking sequence were also considered, namely unidirectional and crossply. In order to evaluate the fatigue life and the fatigue damage, two different loading levels were used, both at 6 Hz frequency, room temperature and R = 0.1. Fatigue damage was monitored using dynamic stiffness decay and acoustic emission techniques. Failure mechanisms were analysed by means of optical and scanning microscopy. The results obtained lead to the conclusion that the embedding of optical fibres markedly prejudices the fatigue performance of the material only for certain configurations. It was also possible to speculate on the fatigue failure mechanisms, and to relate them with relevant experimental parameters, such as the lay-up geometry and optical fibre position.  相似文献   

18.
《Composites》1995,26(9):661-667
The polymeric matrix in a fibre-reinforced composite serves to bind the fibres together, transfer load to the fibres and protect them against environmental attack and damage due to handling. The matrix has a strong influence on several mechanical properties of the composite such as transverse modulus and strength, impact resistance, shear properties and properties in compression. This paper describes the results of an experimental study to determine the effect of resin (matrix) on the post-impact compressive behaviour of carbon fibre woven laminates. Three new low temperature cure (50–125°C) epoxy resins are examined: an unmodified (LTM12), a rubber-modified (LTM25) and a thermoplastic toughened epoxy resin (MT8E). Note, however, that the first two are post-cured at 190°C. Velocities and impact energies were used to simulate momenta typical of low velocity impact hazards associated with aircraft in-service. Measurements of impact damage and damage growth during compression are made using ultrasonic C-scanning and penetrant-enhanced X-ray radiography techniques. For low impact energies the superior performance of the thermoplastic toughened epoxy is confirmed. Its residual compressive strength compares favourably with that obtained for high strength carbon fibre/epoxy laminates manufactured from unidirectional sheets cured at 190°C.  相似文献   

19.
The fatigue behaviour of nickel‐based GH4169 alloy was studied under multiaxial loading at 650 °C. During the middle and late stages of the fatigue life at 650 °C, the axial and shear maximum stresses continue to decrease and plastic strains continue to increase, while at 360 °C different phenomena are observed. The intergranular cracks and certain quantities oxygen were observed in the fracture surfaces. The damage of creep and oxidation are related to temperature and strain range. The life prediction results with a time‐dependent fatigue damage model show the time‐related factors have a certain influence on the fatigue damage.  相似文献   

20.
《Composites》1992,23(5):305-311
A model is presented for the strength, post-fatigue residual strength and damage propagation in notched, cross-ply carbon fibre/polyetheretherketone (PEEK) laminates. Fracture mechanics principles are used to predict quasi-static damage growth, and the application of a Paris law permits extension to fatigue damage. Strength is predicted by applying a failure criterion based on the tensile stress distribution in the 0° plies, as modified by damage (either quasi-static or fatigue). The volume dependence of strength is included by using a simple Weibull distribution. The parameters of the model are determined from independent experiments. Good agreement with experimental results is obtained. Comparisons are made with previous results from carbon fibre/epoxy laminates. The behaviour of the carbon fibre/PEEK is similar, although the extent of delamination and matrix cracking is reduced owing to the higher inherent toughness of the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号