首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(trimethylene terephthalate) has been melt spun at various take-up velocities from 0.5 to 8 km/min to prepare fiber samples. The effect of take-up velocity on the structure and properties of as-spun fibers has been characterized through measurements of birefringence, density, wide-angle X-ray scattering, DSC melting behavior, tensile properties and boiling water shrinkage (BWS). The birefringence exhibits a maximum at take-up velocities between 3 and 4 km/min. The fiber samples spun at the lower take-up speeds have essentially amorphous structures, while the filaments prepared at a velocity range higher than 4 km/min all possess an obvious crystalline structure. With increasing take-up speed, a steady improvement in tensile strength, elongation to break, and BWS is found, whereas the initial modulus remains almost constant within the measurement error, over the entire take-up speed range between 0.5 and 8 km/min.  相似文献   

2.
An on-line study of structure development during poly(butylene terephthalate) melt spinning was carried out. Two polymers with different molecular weights (intrinsic viscosities of 0.75 and 1.0 dL/g) were used. The range of take-up velocities studied was 1500 to 4500 m/min. On-line measurements included diameter, temperature, birefringence, and tension. The phenomenon of diameter thinning (necking) was observed for both polymers at take-up velocities of 3500 and 4500 m/min with a mass throughput of 4 g/min. At a constant mass throughput, the distance from the spinneret at which the necking occurred varied with take-up velocity and molecular weight of the polymer. Increasing the take-up velocity at constant mass throughput caused an increase in cooling rate and a slight increase in the rate at which the temperature decreased with distance from teh spinneret. A small but detectable change in the rate of temperature decrease was observed at a position near or just beyond the formation of the neck. It is suggested that this effect is due to the increased heat transfer caused by the rapid increase in filament velocity and increased surface to volume ration in the neck. Increased take-up velocity also caused necking to occur at higher temperature, as did an increase of polymer molecular weight. Birefringence increased with distance from the spinneret and indicated substantial molecular orientation was developed in the filament prior to the necking zone. A sharp increase of birefringence in the necking zone was observed for take-up velocities of 3500 and 4500 m/min. A discussion of the mechanism of neck formation is presented, and it was concluded that necking is intimately associated with stress-induced crystallization in PBT. An increase of spinline stress resulting from either an increase of take-up velocity or an increase of molecular weight can cause stress-induced crystallization and, hence, necking to occur nearer the spinneret and at higher temperature. For a given polymer this leads to filaments with higher levels of crystallinity, crystalline orientation, and crystalline perfection (greater crystal size). These changes in morphology result in changes in the filament mechanical properties. The effect of molecular weight change on the structure and properties is complicated by the fact that the development of crystallinity seems to be affected by the molecular weight independent of the spinline stress.  相似文献   

3.
Biodegradable poly(butylene succinate-co-terephthalate)(PBST) copolyester, with 70 mol % butylene terephthalate (BT), was melt-spun into fibers at various take-up velocities ranging from 2.0 to 4.0 km/min. The structure development and mechanical properties of the as-spun PBST fibers were intensively investigated via birefringence, wide angle X-ray diffraction (WAXD) measurement, tensile test, and cyclic stretch test. With increasing the take-up velocity, the initial tensile modulus and breaking strength of PBST fibers increased, while elongation at break decreased. These were attributed to the increasing degree of orientation and crystallinity, which were resulted from the elevating tension of spinning line at higher take-up velocity. To elucidate the effects of soft butylene succinate (BS) unit on the tensile and elastic properties of PBST fibers, poly(butylene terephthalate) (PBT) fibers were adopted as a comparison sample. The results showed that the combination of soft BS unit and hard BT unit for PBST fibers made contribution to the lower initial modulus, higher elongation at break and better elastic recovery than those of PBT fibers. Moreover, PBST fibers were found to undergo PBT-like crystal form transition from α-form to β-form crystal structure under tension load through the measurement of WAXD. A relatively wider strain region for the crystal transition of PBST fibers also endowed them with higher elastic recoverability than PBT fibers. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
The structure and properties of fibers prepared from copolymers of poly(ethylene terephthalate) (PET) in which 2‐methyl‐1,3‐propanediol (MPDiol® Glycol is a registered trademark of Lyondell Chemical Company) at 4, 7, 10, and 25 mol% was substituted for ethylene glycol were studied and compared with those of PET homopolymer. Filaments were melt spun over a range of spinning conditions, and some filaments that were spun at relatively low spinning speeds were subjected to hot drawing. The filaments were characterized by measurements of birefringence, differential scanning calorimetry (DSC) crystallinity, melting point, glass transition temperature, wide‐angle X‐ray diffraction patterns, boiling water shrinkage, tenacity, and elongation to break. Filaments containing 25 mol% MPDiol did not crystallize in the spinline at any spinning speed investigated, whereas the other resins did crystallize in the spinline at high spinning speeds. However, compared with PET homopolymer, increasing substitution of MPDiol reduced the rate at which the crystallinity of the melt spun filaments increased with spinning speed and reduced the ultimate crystallinity that could be achieved by high‐speed spinning. The rate of development of molecular orientation, as measured by birefringence, also decreased somewhat with increasing MPDiol content. Shrinkage in boiling water decreased at high spinning speeds as the amount of crystallinity increased; however, the shrinkage decreased more slowly with increase in spinning speed as MPDiol content increased. Tenacity also decreased slightly at any given spinning speed as MPDiol content increased, but there was no significant effect on elongation to break. The addition of MPDiol in amounts up to 7 mol% increased the maximum take‐up velocity that could be achieved at a given mass throughput. This result indicates that the use of higher spinning speeds could potentially increase the productivity of melt spun yarns. Copolymer filaments spun at low speeds were readily drawn to produce highly oriented fibers with slightly less birefringence, crystallinity, and tenacity than similarly processed PET homopolymer. Preliminary dyeing experiments showed that the incorporation of MPDiol improved the dyeability of the filaments. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2598–2606, 2003  相似文献   

5.
卷绕速度对PTT初生纤维结构与性能的影响   总被引:3,自引:2,他引:1  
PTT特性粘数0.935 dL/g,卷绕速度2 500-4 000m/min,熔融纺丝制备PTT初生纤维(PTT/POY),研究了卷绕速度对其结构和性能的影响。结果表明:提高卷绕速度,PTT/POY的玻璃化温度、结晶度和密度提高,冷结晶温度和过热度降低;晶面距和晶粒尺寸略有增加,双折射先逐渐增加,达到最大值后降低,声速取向因子则逐渐增加,但非晶区取向大分子链的取向度随之减小。随卷绕速度的提高,PTT/POY的断裂强度和初始模量增加,而断裂伸长率和断裂比功降低。热拉伸倍数与卷绕速度有关,2 500~4 000 m/min时,应取1.18~1.57。  相似文献   

6.
Crystalline and amorphous sheets of poly(butylene terephthalate) (PBT) were drawn in the temperature range of 20–150°C. The molecular orientation and the relative amount of α- and β-form crystals in the stretched sheets were studied by wide-angle X-ray diffraction (WAXD) and density measurements. When crystalline PBT sheets are drawn at lower temperatures, α-form crystals are partially transformed into β-form crystals. Both α- and β-form crystals are formed by drawing amorphous PBT sheets. The relative amount of α- and β-form crystals is much more sensitive to drawing temperature than to draw ratio. The α-form crystallinity is higher at higher drawing temperature and increases slightly with increasing draw ratio. The second moments of orientation functions of α- and β-form crystals increase with increasing draw ratio, and the increase of the orientation function is suppressed at higher draw ratio. The orientation function of α-form crystals is higher than that of β-form crystals in a same sample.  相似文献   

7.
K Cho  D.N SahebJ Choi  H Yang 《Polymer》2002,43(4):1407-1416
The melting memory effect during the crystallization and heating of semi-crystalline polymers was clearly demonstrated using β-isotactic polypropylene (β-iPP). Differential scanning calorimetry and real-time in situ X-ray diffraction using a synchrotron radiation source were employed to investigate the role of the newly formed α-form crystals via phase transformation from the metastable β-form during the melting process, and to elucidate the memory effect of these new α-form crystals during the crystallization process. The evolution of the memory effect in β-iPP during the crystallization and melting processes is ideally based on the existence of locally ordered α-form in the melt. We monitored the role of this local order by preparing the melt state using a range of hold temperatures and hold times. It was found that the final melt temperature and hold time greatly affect the crystallization behavior during cooling and the phase transformation behavior during heating. Lower hold temperatures and shorter hold times lead to samples rich in α-modification, whereas longer hold times generate samples rich in β-modification during crystallization. At higher hold temperatures even a short hold time is sufficient to destroy the local order in the melt, and the resulting sample exhibits more β-modification. The results are explained on the basis of the existence of local order in the amorphous melt along with external nucleating agent during the crystallization process.  相似文献   

8.
Pure bacterial homo poly(3-hydroxybutyrate) (PHB) fibers were prepared by melt spinning, followed by cold-drawing in an amorphous state at a temperature just above its glass transition temperature. Cold drawn fibers obtained were further drawn at higher temperatures, followed by annealing at various temperatures under tension. Relations among the processing conditions, higher order structures and mechanical properties were investigated using wide- and small-angle X-ray diffractions (WAXD and SAXD, respectively), birefringence, differential scanning calorimetry (DSC), and tensile measurements. PHB has two different crystalline forms, 21 helix conformation (α-form) and planar zigzag conformation (β-form). A single broad reflection of β-form was detected even in a PHB fiber drawn once at a temperature just above its Tg immediately after quenching and it tended to be stronger after 2nd drawing at higher temperatures. Annealing under low temperature and high tension facilitates the occurrence of β-form. It is suggested that the β-form crystal is formed not only from the tie chains between α-form lamella, but also from completely free amorphous chains. Changes in the amount of two types of crystals were analyzed using the WAXD integrated intensity. Birefringence of these fibers shows negative and positive values, depending on process conditions. Changes in higher order structure on the mechanical properties are also discussed.  相似文献   

9.
Two kinds of polypropylene with different molecular weight (MI = 15 and 30) were melt-spun at the spinning temperatures of 210–290°C and take-up velocities of 0.15–3 km/min. In the cases of the spinning temperatures of 270 and 290°C for MI15 and 250 and 290°C for MI30, the density showed a minimum with increasing take-up velocity at around 0.5–1 km/min. This result suggests that crystallization behavior is influenced by two competitive effects, i.e., cooling rate and crystallization rate both of which are enhanced by the increase in take-up velocity. Crystal structures of slightly oriented monoclinic, slightly oriented pseudohexagonal, highly oriented pseudohexagonal, and highly oriented monoclinic were successively observed with increasing take-up velocity. The change of crystallization temperature may result in the different kinds of crystal modifications. Numerical calculations on nonisothermal orientation-induced crystallization in the melt spinning process and experimental results showed qualitative agreement in the change of crystallinity with take-up velocity, spinning temperature, and molecular weight.  相似文献   

10.
The high-speed melt spinning of poly(ethylene 2,6-naphthalene dicarboxylate) (PEN) was performed up to the take-up velocity of the ultra-high-speed region, 9 km/min. From the investigations of the structure and physical properties of the as-spun fibers, the high-speed spinning of PEN was divided into three regions in terms of the mechanism of fiber structure formation. The first region is the take-up velocity of up to 2.5 km/min and the birefringence of up to 0.08 where only a slight increase in molecular orientation was attained. At the take-up velocity of 2.5–4.5 km/min and the birefringence of 0.08–0.25, although some experimental evidences indicated that the orientation-induced crystallization did not occur, there was an increase in the fiber density which suggested the formation of some ordered structure. At the take-up velocity > 4.5 km/min and birefringence > 0.25, the orientation-induced crystallization occurred. The fibers obtained in this region were characterized by the formation of the crystalline structure dominated by the β form. The presence of the necklike deformation in the spinning line was also confirmed. The solidification temperature of the spinning line analyzed from the diameter profile suggested that the formation of β modification crystals occurred at relatively low crystallization temperatures in comparison with that in an isotropic state. Therefore it was indicated that the presence of elongational stress in the spinning line promoted the formation of the β modification crystals. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 1415–1427, 1997  相似文献   

11.
Monofilament fibers were spun continuously from the free surface of a pool of molten poly(ethylene terephthalate) without the aid of a spinneret. For take-up velocities in the range of 12 to 400 ft/min, the denier of the filaments produced was an inverse power function of take-up velocity, and the birefringence was an inverse power function of the filament diameter. Production rate and product uniformity were strongly dependent on take-up velocity and surface temperature of the melt pool.  相似文献   

12.
An extensive experimental study of the structure and properties developed in as-spun nylon 6 filaments is reported. Five polymers representing different molecular weights in the range 25,000–73,000 g/mol (viscosity average) were studied. These polymers were melt spun over a range of spinning speeds using an air drag type of drawdown device. Maximum take-up velocities achieved were in the neighborhood of 4000 m/min. The structure and properties of the as-spun filaments were characterized using density, DSC, WAXS, SAXS, birefringence, and tensile tests. The structural characteristics and properties of the filaments are strongly dependent on molecular weight. Generally, higher molecular weight leads to higher modulus and filament tenacity and lower elongation to break in the as-spun filaments. The structural changes with molecular weight are rather complicated; the complications are explained in terms of changes of crystallization rate and attainable crystallinity.  相似文献   

13.
In this article, the melt spinning behavior of poly(4-methyl-1-pentene) (PMP) hollow fibers (HF) is examined. The melt spinning trials are carried out on a pilot scale melt spinning plant with different settings while a 10-hole 2c-shaped spinneret is used. It is found that the winding speed mainly affects the outer fiber diameter. The influence of different melt spinning parameters is investigated, in particular temperatures, take-up velocities, and the use of quench air. For this purpose, the shape and crystalline structure of the fibers are analyzed using a light microscope, a scanning electron microscope, and wide-angle X-ray scattering. The shape of the fibers is mainly influenced by the temperature settings in the melt spinning process. As a reasonable lower limit, a melt spinning temperature of 280°C is identified. Concerning the crystallinity, a saturation going along with a slight reduction of the polymer chain orientation is observed at elevated take-up velocities.  相似文献   

14.
Poly-α-amino acid fibre being rich in β-form has a silky quality. The fibre being rich in α-form becomes woolly. When there is a strong interaction force through side chains of poly-α-amino acid molecules, the polymer solution is not spinnable regardless of the film forming ability. As it is difficult to spin a strong fibre directly from a polymer in α-form, the spinning solution should contain some parts of random coil in the α-form and the fibre molecules should be oriented in a parallel with the axis by stretching. Finally, most of the remaining β- or random-parts should be retransformed into the α-form. The β-form of poly-L-alanine is most stable and most analogous to silk, but most of β-form in poly-L-leucine stretched fibre is transformed into the α-form in boiling dioxane and the woolly character appears. The character of poly-α-amino acid fibres seems to depend on the contents of α- and β-form. Poly-L-leucine fibre in the α-form is stable in boiling water and it seems to be unnecessary to introduce a cystine bridge into the fibre to maintain a woolly character. By copolymerizing a small amount of methionine into a polymer, the dyeability of fibres is remarkably improved.  相似文献   

15.
Ultrahigh speed spinning of poly(ethylene terephthalate) (PET) was carried out at various take-up velocities from 5 to 10 km/min. The superstructure of as-spun fibers was characterized by small-angle X-ray scattering (SAXS), wide-angle X-ray diffraction (WAXD), viscoelastic properties, and scanning electron microscopy (SEM). Above 6 km/min the peaks or shoulders that are due to the interference between microfibrils appear on the equatorial SAXS intensity curves. The interfibrillar spacing estimated from the peak position increases with increasing take-up velocity. Comparison of the spacing with the lateral crystal sizes estimated from the broadness of the crystal (hk0) WAXD peaks indicates that the microfibril diameter becomes thick with increasing take-up velocity. Although the orientation and density in amorphous region for high-speed spun fibers are very low on the average, it can be seen that a few highly extended tie molecules exist in that region, and the number of these molecules increases with increasing take-up velocity. The modes and mechanisms of fibrillation induced by a rubbing test are discussed relating to these results.  相似文献   

16.
An investigation was carried out of the high speed melt spinning of three polypropylene resins with melt flow indices of 12, 35, and 300. On-line measurements were made of diameter, birefringence, and temperature as a function of distance from the spinneret for a range of spinning conditions for each polymer. A plateau (decrease of cooling rate) in the temperature profile was associated with the occurrence of crystallization in the spinline. The position of this plateau correlated with a rapid rise in the birefringence profile and a rapid decrease in the rate of drawdown in the diameter profile. The temperature and birefringence profiles were used to determine the temperature and position on the spinline at which the onset of crystallization occurred. It was found that the position and temperature of crystallization onset varied considerably with changes in take-up velocity, extrusion temperature, and resin melt index (weight average molecular weight). The crystallization onset occurred nearer the spinneret and at higher temperatures with (1) an increase of take-up velocity, (2) a decrease of extrusion temperature, or (3) a decrease of resin melt flow index. An analysis was carried out to estimate the rate of stress development with distance along the spinline; the results were also used to estimate the stress at the onset of crystallization for each spinning condition. It was concluded that the observed behavior could be attributed to the role of spinline stress in producing molecular orientation and consequent increase of crystallization rate.  相似文献   

17.
The influence of crystallization temperature on formation of the α- and β-form crystals of syndiotactic polystyrene (sPS) was investigated by X-ray diffraction and non-isothermal differential scanning calorimetry analysis. For sPS samples without any thermal history, the crystallization temperature must be the intrinsic factor controlling the formation the α and β-form crystals. Being crystallized at different cooling rate from the melt, sPS forms the β-form crystal until the temperature cooled down to about 230 °C, and α-form crystal can only be obtained when the temperature was below about 230 °C.  相似文献   

18.
The number of efforts about modifying the properties of polymeric fibers by organic or inorganic particles has increased recently because of high‐tech applications of textiles. In addition to these attempts, the discovery of nanotechnology also leads to the development of nanoparticles for various end uses such as nanocomposite fibers. In this article, we aimed to produce slow burning or flame retardant polypropylene filaments for carpet pile yarns by incorporating SiO2 nanoparticles into polymer. Therefore, we present the preparation of filaments incorporating 0.3, 1, and 3% SiO2 nanoparticles and investigate the effects of nanoparticles on the flame retardancy and structural behavior of filaments. Polypropylene and nanoparticles were compounded by melt‐compounding using twin‐screw extruder before spinning. Filaments with trilobal cross sections were spun using pilot melt spinning equipment. The structural properties of nanocomposite fibers were analyzed using X‐ray difractometry, differential scanning calorymetry, scanning electron microscopy, and tensile tests. The flammability behaviors of filaments were evaluated using the oxygen index method. The effect of nanoparticles on structural properties and flame retardancy behaviors of filaments were summarized and discussed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
The melting and crystallization behavior of poly(trimethylene 2,6-naphthalate) (PTN) are investigated by using the conventional DSC, the temperature-modulated DSC (TMDSC), wide angle X-ray diffraction (WAXD) and polarized light microscopy. It is observed that PTN has two polymorphs (α- and β-form) depending upon the crystallization temperature. The α-form crystals develop at the crystallization temperature below 140 °C while β-form crystals develop above 160 °C. Both α- and β-form crystals coexist in the samples crystallized isothermally at the temperature between 140 and 160 °C. When complex multiple melting peaks of PTN are analyzed using the conventional DSC, TMDSC and WAXD, it is found that those arise from the combined mechanism of the existence of different crystal structures, the dual lamellar population, and melting-recrystallization-remelting. The equilibrium melting temperatures of PTN α- and β-form crystals determined by the Hoffman-Weeks method are 197 and 223 °C, respectively. When the spherulitic growth kinetics is analyzed using the Lauritzen-Hoffmann theory of secondary crystallization, the transition temperature of melt crystallization between regime II and III for the β-form crystals is observed at 178 °C. Another transition is observed at 154 °C, where the crystal transformation from α- to β-form occurs.  相似文献   

20.
PTT的纺丝稳定性和聚集态结构   总被引:1,自引:0,他引:1  
利用毛细管流变仪研究PTT熔体挤出时的破裂现象,讨论PTT纺丝稳定性和初生纤维聚集态结构。结屎表明,PTT熔体是一种拉伸变稀型流体。自由挤出时,即使剪切速率达到1.5×105 s-1时,挤出熔体也没有出现明显的熔体破裂;而在纺丝过程中,在卷绕速度达到3.8 km/min(剪切速率2.1×103 s-1)时,就出现明显的熔体断裂现象。在高速纺丝中,控制PTT初生纤维取向结构的关键是喷丝头拉伸比,决定结晶结构的关键是卷绕速度。增加喷丝头拉伸比可以提高初生纤维的取向度;提高卷绕速度可以提高纤维结晶度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号