首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydrodynamic measurements for the spouting of fine particles were obtained in a conical‐based cylindrical bed of diameter 0.186 m, inlet orifice diameters of 6 to 14 mm, and included cone angles of 45 to 80 degrees. Four different types of fine particles with diameters ranging from 0.286 to 0.861 mm were investigated. Four different flow regimes—fixed bed, stable spouting, unstable spouting and slugging—were identified and mapped. The termination of the spouting of fine particles was caused by choking rather than by fluidization of particles in the upper bed. Stable spouting could be achieved when the ratio of the orifice diameter to mean particle diameter was less than 20. The measured minimum spouting velocities were within ±15% of those predicted by the Mathur—Gishler equation. Solids density measurements obtained by a gamma ray densitometer showed that the solid density in the spout increases with bed height and in the annulus is 3% to 10% higher than in a loosely packed bed.  相似文献   

2.
细颗粒喷动床的流体力学特性   总被引:3,自引:1,他引:2  
在直径186 mm的喷动床中考察了细颗粒(dp=0.241~0.874 mm)体系的流体力学性质及夹带和磨损特性.采用不同的喷嘴直径(Di=6~14 mm)和锥底顶角(θ=45°~80°)对其操作状态进行了研究,发现当Di/dp<19~21时可以形成稳定喷动.随着气体速度的增加,床层依次出现固定床、稳定喷动、不良喷动和腾涌等4个流动区域.实验测量的最小喷动速度与Mathur-Gishler关联式的误差在±15%之内.采用γ射线扫描仪测量了固体密度分布,结果表明喷动区的固体密度随高度的增加而增加,环流区的密度比松堆密度大3%~10%.颗粒的磨损和夹带随着气速的增大而增大,在稳定有序的喷动状态下变得最小.  相似文献   

3.
Hydrodynamic measurements were obtained in a half-column of diameter 0.91 m equipped with a conical base using particles of diameter 3.3 to 6.7mm with operation both as pure spouted beds and in the spout-fluid bed mode. Comparison of the experimental results for minimum spouting velocity with equations in the literature generally gave unsatisfactory agreement. On the other hand, the correlations of McNab (1972) and Had?isdmajlovi? et al. (1983) gave reasonable predictions of spout diameters in spouted and spout-fluid beds respectively. Hydrodynamic regimes with auxiliary air present were broadly similar to those determined in smaller columns. However, there were substantial dead regimes at the bottom of the column. A finite difference model based on the vector form of the Ergun equation gave good predictions of air flow distribution and longitudinal pressure profiles.  相似文献   

4.
Hydrodynamic studies were conducted in a semi‐cylindrical spouted bed column of diameter 150 mm, height 1000 mm, conical base included angle of 60° and inlet orifice diameter 25 mm. Pressure transducers at several axial positions were used to obtain pressure fluctuation time series with 1.2 and 2.4 mm glass beads at U/Ums from 0.3 to 1.6, and static bed depths from 150 to 600 mm. The conditions covered several flow regimes (fixed bed, incipient spouting, stable spouting, pulsating spouting, slugging, bubble spouting and fluidization). Images of the system dynamics were also acquired through the transparent walls with a digital camera. The data were analyzed via statistical, mutual information theory, spectral and Hurst's Rescaled Range methods to assess the potential of these methods to characterize the spouting quality. The results indicate that these methods have potential for monitoring spouted bed operation.  相似文献   

5.
Experiments were conducted with shallow beds, in the presence of atomizing air injected into the base, under the following conditions: Particles — urea, sulphur coated urea, polyethylene, polyformaldehyde and polystyrene; particle diameters (dp) – 2.1 to 2.8 mm; cone angle – 60°; cylindrical bed diameter (D) – 0.24 and 0.45 m; bed height (H) – 0.24 to 0.40 m; orifice diameter (di) – 21 to 35 mm; main spouting air (Qs) ≤ 37 L(actual)/s; atomizing air (Qa) ≤ 0.87 L(actual)/s. The minimum spouting velocity is well represented by: Ums = 13.5 (2gH)0.5 (dp/D')1.17 (D'i/D')0.372 (H/D')?0.148 [(τp - τ)/τ]0.289 where D' and D'i denote the modified column and orifice diameter, respectively. Qa, which affects D'i, significantly influenced the air velocity in the spout, but not the pressure profiles in the annulus. Morgan and Littman's (1980) correlation could be adapted to predict the experimental pressure profiles in the annulus.  相似文献   

6.
Jet spouted beds that consisted of a transparent Plexiglas cylindrical column of 1 m high and a conical base with cone angles of 30°, 36°, and 40° were used in this study. The particles used were spherical glass beads with an average diameter of 1.7, 2.1 and 3 mm, respectively, and particle size of 2.2 – 3.1 mm, non‐spherical rice particles. The effect of size and shape of particles, and static bed height on the minimum jet spouting velocity, and standard deviation of pressure fluctuations, was investigated. The results show that the minimum jet spouting velocity and pressure drop increased as the bed height and particle size increased. The minimum jet spouting velocity could be determined from the plot of standard deviation of pressure fluctuations vs. superficial gas velocity. The results obtained were in close agreement with the results of other methods in the literature.  相似文献   

7.
The maximum spoutable bed heights of systems of fine glass spheres spouted with air are studied in flat based semi circular columns of 80 and 152.4 mm diameters using particles with average diameters ranging from 0.3 to 1.3 mm. New correlations are proposed to predict the maximum spoutable bed heights of air spouted fine particle systems. It is concluded that the influence of the column diameter on the maximum spoutable bed height is significantly decreased compared to coarse particle systems and that it further varies with particle size within the fine particle spouting regime. Data reported in the literature agree with the proposed correlations.  相似文献   

8.
ABSTRACT

he performance of a laboratory scale jet spouted bed (JSB) for drying rice flour slurry was studied. The bed consisted of ceramic balls (5028 mm diameter) and the rice flour slurry was sprayed onto the moving particle surface near the inlet part. All the experiments were carried out at the jet spouting regime. This regime has high bed void fraction and violent movement and collision of bed particles. As a result, the dried product layer is attrited from particle surface as a fine powder and entrained from the bed by the spouting air. The experimental result were presented to show the effects of static bed height, inlet air flow rate and temperature, and feed concentration and flow rate on the outlet air temperature, thernal efficiency, and mean particle size and moisture content of the product. Asimple mathematical model, which is based on the conservation of mass and energy equations, was developed. Predicted results agreed well with those obtained from the experiment.  相似文献   

9.
In this article, computational fluid dynamics (CFD) technology is used to model a spouted bed(SB). The multifluid Eulerian-Eulerian approach based on kinetic theory of granular flows and Gidaspow's drag model for the interaction between gas and particles are applied in the modeling. The effects of the SB properties—that is, cone angle, particle size, cylinder diameter, and static bed height of particles—on its dynamics performance are investigated. The simulated results—that is, flow pattern of particles, fountain height, voidage, and particle velocity of the spout zone—are presented. It is shown that periodic fluctuation of spouting appears in an SB with conical angle of 30° and inlet velocity at 16.6 m/s. When the SB cylinder diameter becomes 0.52 m, periodic fluctuation appears, too. The stable spouting of the SB with a 90° cone angle could be obtained at an inlet air velocity of 24.3 m/s. The fountain height of particles decreased with an increase in particle size and the static bed height of particles. It is kept at about 0.19 m when different SB cylinder diameters in the range of 0.36 to 0.48 m are used. In the spouting region, the voidage decreased with static particle height in bed, but the particle velocity increased. For a certain particle size, the voidage decreased with an increase in particle height, but the velocity of the particles increased. It was also found that the cylinder diameter did not affect the volume fraction of particles except for the cylinder diameter 0.52 m and the change in particle velocity was minimal in the spout zone. With the different static bed height of particles used, the voidage and particle velocity did not change much at the same level of spout zone.  相似文献   

10.
The volumetric liquid‐phase mass transfer coefficient, kLa, was determined by absorption of oxygen in air using six different carboxy‐methyl cellulose (CMC) solutions with different rheological values in three phase spout‐fluid beds operated continuously with respect to both gas and liquid. Three cylindrical columns of 7.4 cm, 11.4 cm, and 14.4 cm diameters were used. Gas velocity was varied between 0.00154–0.00563 m/s, liquid velocity between 0.0116–0.0387 m/s, surface tension between 0.00416–0.0189 N/m, static bed height between 6.0–10.8 cm, and spherical glass particles of 1.75 mm diameter were used as packing material. A single nozzle sparger of 1.0 cm diameter was used in the spouting line. The volumetric mass transfer coefficient was found to increase with gas velocity, liquid velocity, and static bed height and to decrease with the increase of the effective liquid viscosity of the CMC solution. A dimensionless correlation was developed and compared with those listed in the literature.  相似文献   

11.
Pulp fibers can be spouted in water in a conical vessel. The entities which are spouted are fiber flocs rather than individual fibers. Synthetic fibers, which do not flocculate, cannot be spouted. For comparison, rigid spherical particles were spouted with water in the same conical vessel. Liquid spouting of rigid particles was similar to gaseous spouting. For pulp spouting, the minimum spouting velocity is proportional to the mass of fibers in the bed and inversely proportional to the diameter of the inlet. For rigid particles, the minimum spouting velocity is proportional to the height of the bed and inversely proportional to the square of the diameter of the inlet. A model for the minimum spouting velocity was developed for pulp spouting.  相似文献   

12.
A cylindrical gas-liquid-solid spouted bed, driven exclusively by gas flow, has been developed with a high potential for use in biochemical processes, such as a biological wastewater treatment. A plexiglass column with a 152 mm inner diameter was used in combination with a 53 mm inner diameter plexiglass draft tube. Three particle types were studied with densities ranging from 1044 kg/m3-1485 kg/m3 and average particle sizes ranging from 0.7-2.5 mm. Four flow regimes were observed when increasing the gas velocity, including fixed bed, semispouted bed, full spouted bed, and internal circulating fluidized bed. The transition gas velocities between those regimes were experimentally measured and termed as minimum spouting velocity, full spouting velocity, and minimum circulating velocity, respectively. A measurement of the downward particle flux in the annulus was used to identify the minimum spouting velocity, while the particle velocity and dense phase retraction in the annulus were monitored for the full spouting and minimum circulating velocities. All regime transition velocities increased with more dense particles and longer draft tubes. The minimum spouting velocity and full spouting velocity were not affected when varying the nozzle-tube gap, while the minimum circulating velocity increased with longer nozzle-tube gaps. Experiments without a draft tube were carried, though the spouting stability was significantly reduced without the draft tube.  相似文献   

13.
The effects of the configuration and operating conditions on the performance of the spouted bed tablet coating process have been studied. The configuration parameters analyzed were the ratio between the draft tube diameter and the inlet orifice diameter, dT/di, and the conical base angle, γ. To analyze the equipment performance the adhesion coefficient, η, and the increase rate of the tablet mass, K1, were measured as a function of the mass flow rate of the coating material, Ws, of the ratio between the mass feed flow rate of coating suspension relative to mass feed flow rate of the spouting gas, W*s/W*g, of the air flow rate relative to minimum spouting, Q/Qms, and of the feed flow rate of atomising air, Wat. Procedures for the evaluation of the growth kinetics and for measuring the product uniformity are presented.  相似文献   

14.
Minimum spouting velocities in conical spouted beds have been obtained from pressure drops versus the superficial gas velocity curves, based on both increasing and decreasing the superficial gas velocity. It has been shown that the minimum spouting velocity from decreasing the superficial gas velocity is lower than from increasing the superficial gas velocity in most cases. This phenomenon is similar to that in conventional spouted beds and different from the early works. The experimental results also showed that there isn't significant difference in the pressure drop and Ums under identical operating conditions between semi‐circular and circular conical spouted beds, and the same Ums can be obtained from absolute pressure drops at any position above the gas inlet. The Ums is found to increase with increasing the cone angle and static bed height, as well as the gas inlet diameter to a less extent.  相似文献   

15.
狭缝式矩型喷动床中多粒度颗粒体系的最小喷动速度   总被引:6,自引:1,他引:5  
在150 mm×50 mm×1100 mm的矩形喷动床中,采用宽度为2, 4, 6 mm 的3种狭缝式气体分布板,研究了单一粒度组成和多粒度组成玻璃珠的最小喷动速度. 实验证明,矩形喷动床的最小喷动速度与物料的粒度和组成有关. 给出了最小喷动速度与颗粒粒径和粒度组成的关联式,作出了多粒度组成颗粒体系最小喷动速度的相图.  相似文献   

16.
Experiments were carried out in a pressurized spouted bed with pressures up to 345 kPa. The minimum spouting velocity was found to decrease with increasing pressure. Comparison of the experimental minimum spouting velocities with the Mathur-Gishler (1955) equation gave unsatisfactory agreement. The maximum spoutable bed height, Hm, and spout diameters increased with increasing bed pressure. The McNab and Bridgwater (1977) equation consistently overestimated Hm for large or heavy particles and underestimated Hm for small particles, with the deviations between the predicted and experimental values being greater at high bed pressures. Although the McNab (1972) equation gave good predictions of average spout diameters for beds at ambient pressure, it gave poor predictions at elevated pressures, with errors up to 66%. For a given fluid-solid combination and column geometry the longitudinal pressure profile in the annulus was found to be independent of bed pressure. Five fairly distinct flow regimes were observed, and spoutability could be improved by increasing bed pressure.  相似文献   

17.
Spoutfluidization is a new technique for solid-fluid contact which aims at incorporating the advantages of spouted bed and fluidized bed technique. The characteristics of physical state of the bed with the variation of the variables which include flow of fluid, particle diameter, orifice diameter, bed height, are studied in this investigation. Experimental study of minimum spoutfluidizing velocity using glass beads with mean particle diameters from 0.254 to 0.600 mm has been carried out in a 90 mm glass column with three spouting inlet orifice sizes at different bed heights. Phase diagrams indicate that the minimum spout-fluid flow rate in a gas-solid system may be a point property for a given bed. A correlation is presented in which the standard deviation of experimental from calculated minimum spoutfluidizing velocity is within 5%.  相似文献   

18.
This paper presents the results from an extensive experimentation on polyester chips heating, crystallization and upgrading in three different size spouted bed units: a cylindrical 0.15 m diameter × 1.3 m tall, a 0.35 m square‐based × 2.1 m tall parallelepiped and a sextuple multi‐spouting 0.7 × 1.05 m2 demonstration reactor for solid state post‐polymerization. The first apparatus was finalized to measuring several process operating variables (maximum gas temperature at the inlet, overall heat transfer coefficient and particle agglomeration tendency); the second unit provided the hydrodynamical data necessary to scale‐up the system, insert into a PET upgrading process of 30 ton/day operating capacity and partially replace a bubbling fluidized bed heating/crystallizing unit. The ultimate goal of the project consisted in intensifying the process design by saving gas compression and thermal energy. The hydrodynamical findings of the squared modular unit were compared against several existing correlations: Manurung's equations for the maximum pressure drop and the pressure drop at stable spouting required a minimal alteration; Mathur and Gishler's equation properly fitted the experimental minimum spouting velocity. The continuously operating multiple spouting apparatus showed that regulating the solids level was an issue mainly due to the very large particle throughput, if related to the mixing efficiency of each module; reciprocal interference between spouted bed cells was manifested.  相似文献   

19.
The characteristics of beds of small glass particles 0.28, 0.46 and 0.77mm in diameter spouted with water were studied in a half-cylindrical column 51mm in diameter with inlet tube diameter of 3.2mm. The minimum spouting velocity, bed pressure drop at minimum spouting and spout diameter were measured. Assuming Darcy flow, the fluid flow in the annulus is modeled and shown to represent the streamlines quite well. The residence time of the fluid in the annulus is calcuated from the model and compared with experimental data.  相似文献   

20.
Although there are some models available in the literature for paste drying in spouted beds, few of them have focused on transient analysis of dynamical systems. Our objective was to integrate experiments and simulations of a dynamic model to investigate the transient response to disturbances and interruptions in the feed flow during paste drying in a spouted bed with inert particles. The spouted bed consisted of a cylindrical column with 50.0?cm of height and 20.0?cm of diameter. Drying tests were performed at inlet gas temperatures of 70?°C and 100?°C and inlet air flow 30% above the minimum spouting velocity. A 5% w/w suspension of calcium carbonate was used as paste material, and glass spheres of 2.2?mm were used as inert materials. Different patterns of step function changes were tested in the paste feed flow rate. A lumped parameter model was used to predict mass and heat transfer during the drying. Experiments and simulations were in good agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号