首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of vinyl ester/styrene network structure on thermal and mechanical properties was investigated. The crosslink density of the resins was altered by changing the molecular weight of the vinyl ester oligomer and by varying the amount of styrene used during the crosslinking reaction leading to variations in both the physical network structure and the chemical composition of the polymeric networks. The glass transition temperatures of the network polymers were found to increase systematically with increasing crosslink density without the additional influence of the chemical composition as determined from both differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The breadth of the glass transition regions increased with crosslink density for the DSC data, but the breadth assessed from the DMA data did not vary significantly for the network materials. A secondary relaxation was observed for the materials using DMA, and this relaxation did not appear to be significantly affected by changes in either the crosslink density or the composition of the network. Cooperativity studies involving time–temperature scaling of dynamic mechanical data in the glass formation temperature region were also conducted. The degree of segmental cooperativity at Tg appeared to be primarily influenced by the chemical composition of the networks. These issues dealing with the structure of the networks provided insight into the associated fracture properties in the glassy state (ambient temperature). Specifically, an empirically based linear correlation was found between the fracture toughness of the networks and the cooperative domain size at the glass transition temperature normalized by the crosslink density. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 917–927, 2001  相似文献   

2.
Nikolaos A. Peppas 《Polymer》1977,18(4):403-407
The tear resistance behaviour of semicrystalline polymeric networks is characterized by noted variations from the behaviour of amorphous polymers, due to the existence of crosslinks and crystallites. A theoretical analysis and experimental investigation of this phenomenon was undertaken using crystalline poly(vinyl alcohol) hydrogels which were prepared by electron beam irradiation of aqueous PVA solutions followed by a two-stage dehydration—annealing process. The tear propagation resistance depended on the time—temperature history, the crosslinking density and the crystallinity of the hydrogels; the values varied between 700 and 1400 J/m2 (4–8 ppi) depending on the above parameters. A relationship between tear resistance and degree of crystallinity was obtained, within the range of experimentation of this work. The tearing energy of the same films was a function of the crosslinking density; a theory for prediction of the tearing energy was established. Typical values for semicrystalline networks were higher (up to 1500 J/m2) than those reported for amorphous networks, mainly due to the crystallites introduced in the network after annealing.  相似文献   

3.
Crosslinking of amorphous poly (ether ether ketone) films was carried out by means of thermal annealing at 400°C as well as by irradiation with 11.0 MeV proton beam at different dose rate ranging from 1.75 to 15.5 kW g?1. The materials properties of the resulting films were investigated by mean of light microscopy, sol‐gel analysis, two‐dimensional infra‐red correlation spectroscopy, 2DCOS‐IR, and differential scanning calorimetry (DSC). It was found that both chain scission and crosslinking yields were decreased by an increase of dose rate and the ratio of crosslinks to chain scission was increased from 0.9 to 1.4. The 2DCOS‐IR analysis in the region 1400–1800 cm?1 showed progressive development of new bands at 1470 and 1740 cm?1, which have been used to support the presence of crosslinking and chain scission reactions. The glass transition temperature also increased in line with increasing crosslinking density, but the results showed a limiting plateau value for the glass transition , which depended only on the absorbed dose. This suggests that crosslinking was limited and did not increase after a specific value of the dose rate. Crosslinking by irradiation has many advantages over thermal annealing; in particular it is a one step rapid process producing a variety of homogeneously crosslinked, good quality films available for chemical modification. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41999.  相似文献   

4.
The gamma radiation effect on polymethylvinylphenylsiloxane (PMVPS) rubbers is investigated by irradiation exposure of PMVPS rubbers to a maximum dose of 200 kGy in the temperature range 28–110 °C. Compared with unirradiated PMVPS rubber, the elongation at break of irradiated PMVPS rubber decreases while its elastic modulus increases with the increase of absorbed dose or radiation temperature. DSC, ATR‐FTIR, XPS, and 1H‐NMR indicate that slight degradation and oxidation reaction occur during the irradiation of PMVPS. Solvent swelling and gel fraction study confirms that the crosslinking density of PMVPS rubbers increases gradually with increasing absorbed dose or radiation temperature. Therefore, radiation‐induced crosslinking of PMVPS is dominant reactions for the chosen dose or temperature range. Furthermore, synergistic effect exists in the high‐temperature radiation process for PMVPS rubbers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45404.  相似文献   

5.
cis-1,4-Polybutadiene (BR) samples, in the absence of crosslinking agents, were simultaneously compressed by ultrahigh pressures (>4.0 GPa) and annealed between 25 and 180°C. The BR samples were crosslinked when the annealing temperatures were above 100°C. The Vickers microhardness of the treated BR increased and the extent of swelling decreased rapidly as the annealing temperature increased, indicating that the crosslinking density increased. Solid-state carbon-13 nuclear magnetic resonance and Fourier transform infrared spectroscopy results showed that some C=C bonds in the BR were opened to form the crosslinking network structures with C—C linkages and that a partial cis–trans isomerization took place during the treatments. Differential scanning calorimetry studies revealed that the glass transition temperature increased and the crystallinity decreased as the annealing temperature increased. When the annealing temperature exceeded 140°C, the treated BR samples lost their rubbery elastic characteristics completely and became brittle materials. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:2131–2140, 1998  相似文献   

6.
Poly(l-lactic acid) (PLLA) has poor heat stability above its glass transition temperature (Tg∼60 °C). To improve its softing above Tg, PLLA was mixed with small amount of crosslinking agents and irradiated with various irradiation doses to introduce crosslinking between polymer chains. The most effective agent for radiation crosslinking was triallyl isocyanurate (TAIC). For melt-quenched PLLA, it was found that the most optimal conditions to introduce crosslinking were around 3% of TAIC and the irradiation dose of 50 kGy. The typically crosslinked PLLA showed very low crystallinity because of wide formation of molecular chain network that inhibited molecular motion for crystallization. Notable heat stability above Tg was given by annealing of PLLA samples. Enzymatic degradation of PLLA was retarded with introduction of crosslinks.  相似文献   

7.
The effect of electron beam (EB) irradiation on the mechanical and thermal properties of initially amorphous and semicrystalline poly(phenylene sulfide) (PPS) films has been investigated. Irradiations were carried out either in a nitrogen or air atmosphere. Subsequent mechanical testing carried out at 23°C suggested that oxidative degradation occurs in air for high radiation dosages. However, modulus and tensile strength were not greatly affected by irradiation level. Moreover, it was found that elongation by yielding no longer occurs at doses higher than 1000 Mrad for initially amorphous materials and above 500 Mrad for the initially semicrystalline materials. Differential scanning calorimetry (DSC) measurements utilized to determine crystallinity and melting behavior suggest the likely occurrence of some crosslinking with high irradiation levels. Scanning electron microscopy (SEM) of the irradiated PPS surface suggest the possible occurrence of gas evolution—at least for high dosage levels.  相似文献   

8.
Electron‐beam initiated crosslinking of poly(vinyl chloride)/epoxidized natural rubber blends, which contained trimethylolpropane triacrylate (TMPTA), was carried out over a range of irradiation doses (20–200 kGy) and concentrations of TMPTA (1–5 phr). The gel content increased with the irradiation dose and the TMPTA level, although the increase was marginal at higher doses and higher TMPTA levels. Blends containing 3–4 phr TMPTA achieved optimum crosslinking, which in effect caused the maximum tensile strength (TS) at a dose of 70 kGy. A further addition of TMPTA caused a decline in the TS above 40 kGy that was due to embrittlement, which is a consequence of excessive crosslinking and the breakdown of the network structure. The possible formation of a more open network as a result of the breakdown of the network structure was further confirmed by the modulus results. Dynamic mechanical analysis (tan δ curve) and scanning electron microscopy studies on samples irradiated at 0 and 200 kGy were undertaken in order to gain further evidence on the irradiation‐induced crosslinking. The plasticizing effect of TMPTA prior to irradiation and the formation of microgels upon irradiation were also discussed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1926–1935, 2001  相似文献   

9.
The effect of gamma radiation on the thermal behavior and crystalline structure of low density polyethylene (LDPE) has been investigated using differential scanning calorimetry (DSC) and X‐ray diffraction techniques (XRD). Gamma irradiation was carried out in atmospheric air to a maximum dose of 883 kGy. DSC results of the heating run from room temperature up to 150 °C showed that the melting temperature (Tm), and onset temperature of LDPE film decrease linearly with increasing irradiation dose. However, upon cooling LDPE film from 150 °C to room temperature, the crystallization temperature (Tc) and onset temperature were found to decrease non‐linearly with increasing irradiation dose up to 500 kGy and then tended to level off. The change in heat of fusion (ΔHf) with irradiation dose was found to proceed with different behaviour, two stages, with a kink at irradiation dose of about 500 kGy, being observed. This suggests the occurrence of degradation and crosslinking at low and high doses, respectively. However, parameters of the X‐ray diffraction pattern such as number of diffraction patterns, peak position (2θ) and width of the diffraction pattern, support the results of DSC measurements. © 2000 Society of Chemical Industry  相似文献   

10.
Low and high density polyethylenes (PE) were crosslinked by two methods, namely, chemically by use of different amounts of tert‐butyl cumyl peroxide (BCUP) and by irradiation with different doses of electron beam. A comparison between the effects of these two types of crosslinking on crystalline structure, crystallinity, crystallization, and melting behaviors of PE was made by wide angle X‐ray diffraction and DSC techniques. Analysis of the DSC first heating cycle revealed that the chemically induced crosslinking, which took place at melt state, hindered the crystallization process and decreased the degree of crystallinity, as well as the size of crystals. Although the radiation‐induced crosslinking, which took place at solid state, had no significant influence on crystalline region, rather, it only increased the melting temperature to some extent. However, during DSC cooling cycle, the crystallization temperature showed a prominent decrease with increasing irradiation dose. The wide angle X‐ray scattering analysis supported these findings. The crystallinity and crystallite size of chemically crosslinked PE decreased with increasing peroxide content, whereas the irradiation‐crosslinked PE did not show any change in these parameters. As compared with HDPE, LDPE was more prone to crosslinking (more gel content) owing to the presence of tertiary carbon atoms and branching as well as owing to its being more amorphous in nature. HDPE, with its higher crystalline content, showed relatively less tendency toward crosslinking especially by way of irradiation at solid state. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3264–3271, 2006  相似文献   

11.
The effect of temperature over the range ?196 to 150°C on the crosslinking of polyethylenes irradiated by electron beam has been investigated on the basis of gel content determination and Fourier transform infra-red (FTIR) spectroscopy. The crosslinking efficiency increases significantly with increasing irradiation does and at elevated irradiation temperature. The crosslinking rates of high density polyethylene (HDPE) and low density polyethylene (LDPE) samples above the melting point (TM) are much higher than those below Tm. The FTIR data give positive evidence: (i) that trans-vinylene double bonds in cross linked HDPE and LDPE samples increase with increasing irradiation dose temperature (ii) that vinyl double bonds in HDPE decrease rapidly with increasing irradiation dose and temperature, and (iii) vinylidene groups in LDPE decrease slowly with increasing temperature at the lower dose and are almost independent of the irradiation temperature at above room temperature and the higher dose of more than 100 kGy. Gas bubbles are observed in LDPE samples irradiated at 100 and 150°C with high dose (200 to 250 kGy). The size of the bubbles increases gradually at high temperatures.  相似文献   

12.
Elemental sulfur has been used to crosslink poly(arylene ether ketone)s. Evidence for crosslinking is presented in terms of rheological data of the melt. The effects of crosslinking on mechanical properties have been examined using tensile creep, stress–relaxation, and dynamic-mechanical properties in torsion. The crosslinking elevates the glass transition temperature (Tg), as measured by the maximum in the loss tangent, and reduces creep strain at temperatures above Tg. A new technique for monitoring cure is also presented. One of the advantages of this method for crosslinking poly(arylene ether ketone)s is that the crosslinking can be carried out both in the solid state and in the melt, the rate being dependent on the temperature (above Tg) of annealing.  相似文献   

13.
The aromatic polysulfone poly(oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy-1,4-phenyleneiso-propylidene-1,4-phenylene) (I) showed no change in flexural yield strength after doses of γ-radiation up to 600 Mrad in vacuum at 35,80, and 125°C (Tg = 190°C)). However, the flexural strength decreased markedly with doses above 100 Mrad on irradiation in air, to 40–60% of the initial value after 200–400 Mrad, depending on the sample and the irradiation conditions. Chain crosslinking was predominant over scission for irradiation in vacuum at all temperatures; (G(X), G(S), and G(S)/G(X) increased with the irradiation temperature, but G(S)/G(X) decreased to zero above Tg. Poly(oxy-1,4-phenylenesulfonyl-1,4-phenylene) (II) behaved similarly, except that the flexural strength was found to be very dependent on the thermal treatment of the sample. This polymer showed a remarkable retention of its mechanical properties on irradiation up to 200°C (Tg = 230°C) in the absence of air, the flexural strength being retained up to 500 Mrad. Radiation annealing occurred at 35°C in vacuum and air and combined radiation and thermal annealing at 125 and 220°C. Progressive removal of surface layers from flexural test bars of I irradiated in air showed that the decrease in flexural strength with dose could be explained by a decrease in the molecular weight towards the surface resulting from radiation-oxidation reactions.  相似文献   

14.
Photoinitiated crosslinking of EVA in the presence of benzophenone (BP) as photoinitiator and triallyl isocyanurate (TAIC) as crosslinker and characterization of the related properties have been studied by gel determination, heat extension, DSC, DMTA, TGA, and mechanical measurements. The photoinitiated crosslinking efficiency of the EVA‐BP‐TAIC system and various factors affecting the crosslinking process, such as photoinitiator and crosslinker and their concentrations, irradiation temperature, and irradiation atmosphere were studied in detail and optimized by comparison of gel contents. The results show that the EVA samples with a thickness of 1 mm are readily crosslinked to a gel content of above 80% with 5 s UV‐irradiation under optimum conditions. The data from the heat extension and DSC show that the crosslinking density of photocrosslinked EVA increase and their crystallinities decrease with increasing the UV‐irradiation time. At the same time, photocrosslinking of EVA leads to a lowering of the melt temperature and a decrease of heat of fusion. The DMTA results show that photocrosslinking increases the amorphous phase and storage modulus of the crosslinked EVA, but does not change the glass transition temperature. The data from TGA and mechanical tests give evidence that the thermal stability and mechanical properties of photocrosslinked EVA samples are much better than those of the uncrosslinked EVA. POLYM. ENG. SCI., 47:1761–1767, 2007. © 2007 Society of Plastics Engineers  相似文献   

15.
Fluorinated polyacrylates are highly hydrophobic and oleophobic. However, their poor mechanical properties prevent their development in many applications. Combination of a fluorinated polyacrylate network with a rigid cellulose acetate butyrate (CAB) network in an interpenetrating polymer network (IPN) architecture is an effective method for improving the mechanical properties of fluorinated polyacrylates. IPNs combining poly(3,3,4,4,5,5,6,6,7,7,8,8,8‐tridecafluorooctyl acrylate) (polyAcRf6) with CAB were prepared according to an in situ polymerization/crosslinking synthesis. CAB was crosslinked by addition between unmodified hydroxyl groups and the isocyanate of a pluri‐isocyanate crosslinker. The fluorinated network was obtained through free‐radical copolymerization of 3,3,4,4,5,5,6,6,7,7,8,8,8‐tridecafluorooctyl acrylate with poly(ethylene glycol dimethacrylate). The rates of formation of both networks were followed using Fourier transform infrared spectroscopy. Differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) of IPNs show a single glass transition temperature and a single mechanical relaxation temperature, which are characteristic of a high degree of interpenetration between the partner networks. The mechanical properties of IPNs are greatly improved compared with those of the single fluorinated network. CAB/polyAcRf6 IPNs were prepared, and characterized using DSC and DMTA as well as contact angle measurements for their surface properties. As hoped, the mechanical properties of such materials are much improved compared with those of the fluorinated partner alone. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
The changes in the mechanical and thermal properties of electron-beam-irradiated PMP of two different molecular weights (〈Mw〉 = 9.2 × 105, 〈Mw〉 = 1.8 × 106) have been studied. Electron beam (EB) irradiation was performed either in a nitrogen or air atmosphere to a maximum dosage of 40 Mrad. Stress–strain behavior of the irradiated materials show that the lower molecular weight polymer is more affected within this dose range than the higher molecular weight material. The modulus of both PMP materials (at 23°C), however, was not affected by EB. Moreover, it was observed that by increasing radiation dose up to 10 Mrad the occurrence of yielding disappeared in the case of the lower molecular weight system but was still found in the high molecular weight material up to 20 Mrad. The elongation at break of both PMP materials was systematically decreased by increasing the dose level. The rate of stress–relaxation of irradiated samples increased as dosage increased. It is believed that oxidative degradation is promoted as a result of irradiation which induces chain scission. This result was confirmed by GPC analysis which showed that, by increasing radiation dose, the molecular weight systematically decreased. DSC measurements used to investigate the changes in thermal properties showed that the melting temperature and heat of fusion decreased as the dose increased. An interesting feature of the DSC studies was the presence of an endothermic doublet in the melting behavior that transformed into a single peak following irradiation.  相似文献   

17.
Crosslinking of homemade low‐density polyethylene (LDPE) was performed by electron‐beam (EB) irradiation. The gel content of the EB‐exposed LDPE was determined by the solvent‐extraction method. The degree of crosslinking was also evaluated by a hot set measuring test. The results obtained from both the gel–sol and the hot set methods showed that the degree of crosslinking was dependent on the deposited energy in LDPE samples. Increasing the absorbed dose increased the degree of network formation. The LDPE with higher molecular weight yielded higher efficiency of crosslinking at the same irradiation dose. The effect of irradiation dose on the molecular weight between crosslinks (Mc), glass‐transition temperature, and free volume were calculated. Mechanical test results showed that the tensile strength of the samples increased with increase in the irradiation dose up to 150 kGy and then slightly decreased with further increasing the deposited energy. The elongation at break decreased with increasing the absorbed dose. The results obtained from differential scanning calorimetry exhibited a small reduction in the melting point and the degree of crystallinity of the EB‐exposed LDPE samples compared to those of the untreated samples. The effect of crosslinking on the electrical properties of the irradiated samples was insignificant. The dielectric constant of the treated samples remained nearly constant within the irradiation dose range, although the dissipation factor increased slightly with increasing the absorbed dose. The results obtained from characterizing the EB‐induced crosslinking of homemade polyethylene, including LH0030 and LH0075, showed the higher molecular weight polyethylene (LH0030) as a preferred option for wire and cable insulation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1959–1969, 2002  相似文献   

18.
Poly(vinyl alcohol)/poly(N‐vinyl pyrrolidone) (PVP)/chitosan hydrogels were prepared by a low‐temperature treatment and subsequent 60Co γ‐ray irradiation and then were medicated with ciprofloxacin lactate (an antibiotic) and chitosan oligomer (molecular weight = 3000 g/mol). The gel content, swelling ratio, tensile strength, and crystallinity of the hydrogels were determined. The effects of the chitosan molecular weight, the low‐temperature treatment procedure, and the radiation dosage on the hydrogel properties were examined. The molecular weight of chitosan was lowered by the irradiation, but its basic polysaccharide structure was not destroyed. Repeating the low‐temperature treatment and γ‐ray irradiation caused effective physical crosslinking and chemical crosslinking, respectively, and contributed to the mechanical strength of the final hydrogels. The incorporation of PVP and chitosan resulted in a significant improvement in the equilibrium swelling ratio and elongation ratio of the prepared hydrogels. The ciprofloxacin lactate and chitosan oligomer were soaked into the hydrogels. Their in vitro release behaviors were examined, and they were found to follow diffusion‐controlled kinetics. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2453–2463, 2006  相似文献   

19.
Electron‐beam initiated crosslinking of a poly(vinyl chloride)/epoxidized natural rubber blend (PVC/ENR), which contained trimethylolpropane triacrylate (TMPTA), was carried out over a range of irradiation doses (20–200 kGy) and concentrations of TMPTA (1–5 phr). The gelation dose was determined by a method proposed by Charlesby. It was evident from the gelation dose, resilience, hysteresis, glass‐transition temperature (Tg), IR spectroscopy, and scanning electron microscopy studies that the miscible PVC/ENR blend underwent crosslinking by electron‐beam irradiation. The acceleration of crosslinking by the TMPTA was further confirmed in this study. Agreement of the results with a theory relating the Tg with the distance between crosslinks provided further evidence of irradiation‐induced crosslinking. The possible mechanism of crosslinking induced by the irradiation between PVC and ENR is also proposed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1914–1925, 2001  相似文献   

20.
Electron‐beam‐initiated grafting of trimethylolpropane triacrylate (TMPTA) onto the bulk ethylene propylene diene monomer (EPDM) was carried out with varying concentrations of TMPTA at a constant irradiation dose of 100 kGy and over a wide range of irradiation doses (0–500 kGy) at a fixed concentration (10%) of TMPTA. The rubber was also modified in the bulk by tripropylene glycol diacrylate (TPGDA, 10%) and tetramethylol methane tetraacrylate (TMMT, 10%) at an irradiation dose of 100 kGy. The modified rubbers were characterized by IR spectroscopy, crosslinking density measurements, and mechanical, dynamic mechanical, and electrical properties. The IR studies indicated increased peak absorbances at 1730, 1260, and 1019 cm−1 due to increased 〉CO and C O C concentrations up to certain levels of TMPTA and irradiation dose. These are accompanied by an increase in the crosslinking density. The tensile strength of the samples increases gradually with increasing both the concentration of the monomer and radiation dose up to a certain level. The values of the modulus also increase at the expense of the elongation at break. An increase in the number of double bonds from two in the case of the diacrylate to four in the case of the tetraacrylate also brings about an increase in the tensile strength and moduli values. The elongation at break, however, decreases. The DMTA measurements indicate changes in the glass transition temperature, Tg, and tan δmax on modification. The Tg shifts to a higher temperature with a simultaneous lowering of the tan δmax values as the TMPTA level is increased. A similar trend is observed when the irradiation dose is increased and the nature of the monomer changes from di‐ to tetraacrylate. The dielectric loss tangent registers an increase on modification by irradiation of TMPTA while the permittivity is decreased. All the results could be explained on the basis of the structural modification and crosslinking density. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 323–337, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号