首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The Orthopteran central nervous system has proved a fertile substrate for combined morphological and physiological studies of identified neurons. Electron microscopy reveals two major types of synaptic contacts between nerve fibres: chemical synapses (which predominate) and electrotonic (gap) junctions. The chemical synapses are characterized by a structural asymmetry between the pre- and postsynaptic electron dense paramembranous structures. The postsynaptic paramembranous density defines the extent of a synaptic contact that varies according to synaptic type and location in single identified neurons. Synaptic bars are the most prominent presynaptic element at both monadic and dyadic (divergent) synapses. These are associated with small electron lucent synaptic vesicles in neurons that are cholinergic or glutamatergic (round vesicles) or GABAergic (pleomorphic vesicles). Dense core vesicles of different sizes are indicative of the presence of peptide or amine transmitters. Synapses are mostly found on small-diameter neuropilar branches and the number of synaptic contacts constituting a single physiological synapse ranges from a few tens to several thousand depending on the neurones involved. Some principles of synaptic circuitry can be deduced from the analysis of highly ordered brain neuropiles. With the light microscope, synaptic location can be inferred from the distribution of the presynaptic protein synapsin I. In the ventral nerve cord, identified neurons that are components of circuits subserving known behaviours, have been studied using electrophysiology in combination with light and electron microscopy and immunocytochemistry of neuroactive compounds. This has allowed the synaptic distribution of the major classes of neurone in the ventral nerve cord to be analysed within a functional context.  相似文献   

2.
GABA is a known inhibitory neurotransmitter in the mammalian brain. The site of GABAergic synapses can be determined with immunocytochemical methods that localize either GABA or its synthesizing enzyme, glutamate decarboxylase (GAD). In general, GABAergic axon terminals contain pleomorphic synaptic vesicles and form symmetric synapses. However, a small number of GABAergic axon terminals in selected brain regions (spinal cord, cerebellum, superior colliculus, striatum, globus pallidus, inferior olive, and substantia nigra) form asymmetric synapses. GAD- and GABA-immunoreactive processes that contain synaptic vesicles participate in every known morphological type of chemical synapse. These include axosomatic, axodendritic, axospinous, initial segment, axoaxonic, dendrodendritic, serial, reciprocal, and ribbon synapses. Although GABAergic synapses form a heterogeneous group, they most commonly form axosomatic, axodendritic, and initial segment synapses in the brain and spinal cord. These findings provide helpful guidelines for the identification of GABAergic synapses in future studies.  相似文献   

3.
The fine structure of both the afferent and efferent hair cell synapses in the sensory epithelium of guinea pig organ of Corti was examined by freeze-fracture electron microscopy. In the afferent synapse, barlike aggregates of intramembrane particles (IMPs) of about 10 nm in diameter were seen on the P-face of the afferent presynaptic membrane directly beneath the presynaptic dense projection which is located in the active zone of the presynaptic membrane. Small and large depressions have been seen on the presynaptic membrane. The former were observed in the proximity of the barlike aggregates, while the latter were observed some distance from the aggregate. In outer hair cells, IMPs of about 10 nm in diameter were seen on the P-face of the afferent postsynaptic membrane at a density of 3,000/μm2. In the efferent synapse, many aggregates composed of from several to tens of large IMPs of 13 nm in diameter were observed on the presynaptic membrane. These aggregates were localized to small membrane depressions, which tended to be deeper as particle number per aggregate increased. Dense populations of IMPs of about 9 nm in diameter were observed on the P-face of the efferent postsynaptic membrane at a density of 4,000/μm2. A fenestrated subsynaptic cistern completely covers the efferent postsynaptic membrane. Moreover, the subsynaptic cistern spans several efferent postsynaptic membranes when efferent synapses are gathered in a group. In the afferent and efferent synapses of hair cells, specializations of the synaptic membranes were represented by marked aggregates characteristic of IMPs. In the efferent synapse, IMP movement inside the synaptic membrane was proposed in relationship to retrival of synaptic vesicle membrane. Structural relationship between the subsynaptic cistern and efferent postsynaptic membrane was revealed.  相似文献   

4.
Cholinergic synapses can be identified in immunocytochemical preparations by the use of monoclonal antibodies and specific antisera to choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine (ACh) and a specific marker for cholinergic neurons. Electron microscopic studies demonstrate that the fibers and varicosities observed in light microscopic preparations of many brain regions are small-diameter unmyelinated axons and vesicle-containing boutons. The labeled boutons generally contain clear vesicles and one or more mitochondrial profiles. Many of these boutons form synaptic contacts, and the synapses are frequently of the symmetric type, displaying thin postsynaptic densities and relatively short contact zones. However, ChAT-labeled synapses with asymmetric junctions are also observed, and their frequency varies among different brain regions. Unlabeled dendritic shafts are the most common postsynaptic elements in virtually all regions examined although other neuronal elements, including dendritic spines and neuronal somata, also receive some cholinergic innervation. ChAT-labeled boutons form synaptic contacts with several different types of unlabeled neurons within the same brain region. Such findings are consistent with a generally diffuse pattern of cholinergic innervation in many parts of the central nervous system. Despite many similarities in the characteristics of ChAT-labeled synapses, there appears to be some heterogeneity in the cholinergic innervation within as well as among brain regions. Differences are observed in the sizes of ChAT-immunoreactive boutons, the types of synaptic contacts, and the predominant postsynaptic elements. Thus, the cholinergic system presents interesting challenges for future studies of the morphological organization and related function of cholinergic synapses.  相似文献   

5.
The ultrastructural localization of putative excitatory (glutamate, aspartate) and inhibitory (taurine, glycine) amino acid neurotransmitters is described in several selected rat brain regions. In general, axon terminal profiles immunoreactive for excitatory amino acids formed asymmetric synapses with non-immunoreactive small diameter dendritic profiles or dendritic spines. In the cerebellum, both mossy fiber terminals and parallel fiber terminals were immunoreactive for glutamate and aspartate. In the hippocampus, mossy fiber terminals within the stratum lucidum of the CA3 region were immunoreactive for glutamate. Localization of glutamate and aspartate to cerebellar parallel and mossy fibers, as well as the identification of glutamate in hippocampal mossy fibers, is consistent with the excitatory nature of these fibers as described in previous physiological studies. Glutamate-like immunoreactive terminals were also identified in subnucleus caudalis of the spinal trigeminal nucleus and in the dorsal horn of the spinal cord. Immunoreactive axon terminals for two putative inhibitory neurotransmitters, glycine and taurine, displayed a greater number of morphological variations in synaptic structure. In the cerebellum, taurine-like immunoreactivity was present in both basket cell axon terminals which formed symmetric synapses with Purkinje cell neurons, and in a few mossy fiber terminals which formed asymmetric synapses with dendritic spines. In the area dentata of the hippocampus, taurine-like immunoreactive profiles formed asymmetric synapses with dendritic elements. Glycine-like immunoreactive terminals formed symmetric synapses with cell perikarya in both the ventral horn of the spinal cord and in the cochlear nuclei, and on axon terminals in the spinal trigeminal and cochlear nuclei. In contrast, some glycine-like immunoreactive terminals formed asymmetric synapses with distal dendritic profiles in the spinal cord and spinal trigeminal nucleus. The localization of taurine to cerebellar basket cell axons and glycine to axon terminals that synapse on ventral horn motor neuron perikarya is consistent with the hypothesis that these amino acids are functioning as inhibitory neurotransmitters at these synapses. Taurine localization to cerebellar mossy fibers and to fibers in the molecular layer of the dentate gyrus may be more consistent with a proposed neuromodulator role of taurine.  相似文献   

6.
For more than a century the Golgi method has been providing structural information about the organization of neuronal networks. Recent developments allow the extension of the method to the electron microscopic analysis of the afferent and efferent synaptic connections of identified, Golgi-impregnated neurones. The introduction of degeneration, autoradiographic, enzyme histochemical, and immunocytochemical methods for the characterization of Golgi-impregnated neurones and their pre-and postsynaptic partners makes it possible to establish the origin and also the chemical composition of pre-and postsynaptic elements. Furthermore, for a direct correlation of structure and function the synaptic interconnections between physiologically characterized, intracellularly HRP-filled neurones and Golgi-impregnated cells can be studied. It is thought that most of the neuronal communication takes place at the synaptic junction. In the enterprise of unravelling the circuits underlying the synaptic interactions, the Golgi technique continues to be a powerful tool of analysis.  相似文献   

7.
Pyramidal tract (Pt) neurons in the sensory-motor cortex of cat were labeled by injection of HRP into the spinal cord. Ultrastructural and quantitative analysis of the synaptic covering of their soma and apical dendrite (up to 100 μm from soma) was undertaken. We intercalated a visual-manual treatment between composite electron micrographs and a fully automated computer system and developed specific programs for evaluation of the morphometric data. Programs are included. A total of 412 synaptic boutons were examined that were found in contact with large Pt neurons. The mean linear percentage of the surface area covered by boutons was 26.2 ± 8.4% and the mean contacting length and cross-sectional area of the bouton profiles were 1.28 ± 0.58 μm and 0.89 ± 0.59 μm2, respectively. All types of boutons with active zones accounted for 41.2% of the total. The distribution of two types of bouton (S- and F-type boutons, showing asymmetric and symmetric contacts, respectively) was examined quantitatively. The mean proportion of F-type boutons was 89.1% with a soma and S-type boutons contacting apical dendrites was 10.9%. In addition, GABAergic boutons were identified with the soma by immunocytochemistry with antibodies against glutamic acid decarboxylase. They formed symmetric synaptic contacts with the Pt cells that were identical to those formed by F-type boutons. The quantitative analysis revealed that synaptic clefts are narrower and synaptic vesicles are smaller in symmetric F-type boutons than in S-type boutons forming asymmetric contacts. These data establish that at least three parameters (postsynaptic density, synaptic cleft, and size of vesicles) can be utilized singly or in combination to identify GABAergic inhibitory synapses in neocortex.  相似文献   

8.
Recent ultrastructural studies of neuronal-pinealocytic interconnections in the monkey pineal are reviewed. The pinealocytes in the adult monkey show almost all of the cytological specializations known in subprimate mammals. Adjacent pinealocytes are functionally coupled through ribbon synapses on cell bodies and gap junctions on cell bodies and cell processes. The pinealocytes receive direct synpatic contacts of nerve fibers with cholinergic terminal morphology. Nerve cells restricted to the central portion of the pineal receive synaptic contacts with more than three different morphologically defined types of nerve terminals. In addition to nerve terminals containing small clear vesicles or vesicles of pleomorphic morphology, a pinealocyte's terminal process containing the synaptic ribbon forms a true synaptic contact on the nerve cell body. The diversity of synapses on these nerve cells strongly suggests multiple origins of these neurons rather than a single peripheral parasympathetic origin. The possible involvement of pineal neurons in an intrinsic circuit that regulates the function of pinealocytes and integrates the neural input from the central as well as the peripheral nervous systems is discussed.  相似文献   

9.
Many aspects of the organization of the electromotor synapse of electric fish resemble the nerve-muscle junction. In particular, the postsynaptic membrane in both systems share most of their proteins. As a remarquable source of cholinergic synapses, the Torpedo electrocyte model has served to identify the most important components involved in synaptic transmission such as the nicotinic acetylcholine receptor and the enzyme acetylcholinesterase, as well as proteins associated with the subsynaptic cytoskeleton and the extracellular matrix involved in the assembly of the postsynaptic membrane, namely the 43-kDa protein-rapsyn, the dystrophin/utrophin complex, agrin, and others. This review encompasses some representative experiments that helped to clarify essential aspects of the supramolecular organization and assembly of the postsynaptic apparatus of cholinergic synapses.  相似文献   

10.
The superior olivary complex conveys information about binaural time and intensity to higher centers in the auditory pathway. This information is sent primarily to the subdivisions of the inferior colliculus and to the nuclei of the lateral lemniscus. Olivary projections are the predominant afferents to the central nucleus of the inferior colliculus. Electron microscopic observations of axonal endings in the central nucleus suggest that the ipsilateral medial superior olive and contralateral lateral superior olive make excitatory synapses. In contrast, the axons from the ipsilateral lateral superior olive to the central nucleus contain glycine and have a morphology consistent with inhibitory synapses. Little is known about the transmitter types used by olivary projections to the nuclei of the lateral lemniscus, but they are presumed to be similar to the collicular projections. Olivary ascending efferents are tonotopically organized and terminate in laminae in the inferior colliculus. They combine with other laminar afferents and postsynaptic neurons to create fibro-dendritic laminae in the colliculus. The key to the functional organization of the olivary efferents is the possible segregation of excitatory olivary efferents from each other in "synaptic domains" located on the laminae. This segregation may be the major determinant of response properties in the colliculus. Olivary efferents may converge with other non-olivary afferents on the same postsynaptic neurons in the colliculus. Inhibitory efferents from the lateral superior olive are essential in shaping the response properties of neurons in the colliculus. Olivary efferents to the nuclei of the lateral lemniscus are also key components of ascending pathways that inhibit neurons in the midbrain.  相似文献   

11.
A number of different neuropeptides have been described within presynaptic terminals at the ultrastructural level in the central nervous system. The majority of these neuropeptides share a common morphology with one another. Terminals containing neuropeptides have a population of small, clear vesicles associated with the active zone of the synapse and a lesser number of large, granular vesicles that are located at a distance from the active site of the synapse. It is believed that the large, granular vesicles act as a mechanism for the transport/storage of the neuropeptides, while the small, clear vesicles are thought to be acting as structures responsible for the release of the neurotransmitter/neuropeptide into the synaptic cleft. The neuropeptide containing terminals most often have asymmetrical junctions associated with their presynaptic membranes, although symmetrical junctions have been described with peptide containing terminals in a number of areas in the central nervous system. Neuropeptide containing terminals contact every part of the neuronal membrane; however, the majority of synaptic contacts involve portions of the dendritic shafts. Evidence is beginning to accumulate to indicate that for certain neuropeptides there is a specific spatial arrangement to their termination along the neuronal membrane.  相似文献   

12.
Because vertebrate neuromuscular junctions are readily accessible for experimental manipulation, they have provided a superb model in which to examine and test functional correlates of chemical synaptic transmission. In the neuromuscular synapse, acetylcholine receptors have been localized to the crests of the junctional folds and visualized by a variety of ultrastructural techniques. By using ultrarapid freezing techniques with a temporal resolution of less than 1 msec, quantal transmitter release has been correlated with synaptic vesicle exocytosis at discrete sites called “active zones.” Mechanisms for synaptic vesicle membrane retrieval and recycling have been identified by using immunological approaches and correlated with endocytosis via coated pits and coated vesicles. In this review, available ultrastructural, physiological, immunological, and biochemical data have been used to construct an ultrastructural model of neuromuscular synaptic transmission that correlates structure and function at the molecular level.  相似文献   

13.
The neurons with the widest axons that carry information into a locust brain belong to L-neurons, the large, second-order neurons of the ocelli. L-neurons play roles in flight control and boosting visual sensitivity. Their morphology is simple, and their axons convey graded potentials from the ocellus with little decrement to the brain, which makes them good subjects in which to study transmission of graded potentials. L-neurons are very sensitive to changes in light, due to an abnormally high gain in the sign inverting synapses they receive from photoreceptors. Adaptation ensures that L-neurons signal contrast in a light signal when average light intensity changes, and that their responses depend on the speed of change in light. Neurons L1-3 make excitatory output synapses with third-order neurons and with L4-5. These synapses transmit tonically, but are unable to convey hyperpolarising signals about large increases in light. Graded rebound spikes enhance depolarising responses. L1-3 also make reciprocal inhibitory synapses with each other and transmission at these decrements so rapidly that it normally requires a presynaptic spike. The resolution with which graded potentials can be transferred has been studied at the inhibitory synapses, and is limited by intrinsic variability in the mechanism that determines neurotransmitter release. Electron microscopy has shown that each excitatory connection made from an L-neuron to a postsynaptic partner consists of thousands of discrete synaptic contacts, in which individual dense-staining bars in the presynaptic neuron are associated with clouds of vesicles. Acetylcholine is likely to be a neurotransmitter released by L-neurons.  相似文献   

14.
Innervations of inner and outer hair cells of the organ of Corti of the human cochlea were studied by serial section electron microscopy. At the base of inner hair cells, presumed afferent fibers were of varying size and demonstrated synaptic specialization consisting of a presynaptic body, vesicles, and asymmetrical synaptic membrane specialization. Two types of neurons, vesiculated presumably efferent and nonvesiculated presumably afferent, synapsed at the base of outer hair cells. The synaptic specialization of afferent fibers included presynaptic body, vesicles, and asymmetrical membrane thickening, whereas efferent synapses demonstrated presynaptic vesicles and a subsynaptic cisterna. Some presumably afferent nerve terminals formed a reciprocal synapse with outer hair cells in both the human and the chimpanzee. Such a synaptic relationship demonstrated morphologic specialization consistent with both hair cell-to-neuron and neuron-to-hair cell transmission between the same outer hair cell and nerve terminal. The innervation density of inner and outer hair cells and the comparative anatomy of the afferent and efferent innervation are discussed.  相似文献   

15.
Application of rapid freezing, freeze substitution fixation, and freeze fracture techniques to the study of synaptic junctions in the mammalian central nervous system has revealed new aspects of synaptic structure that are consistent with and partially explicate advances in synaptic biochemistry and physiology. In the axoplasm adjacent to the presynaptic active zone, synaptic vesicles are linked to large spectrin-like filamentous proteins by shorter proteins that resemble synapsin I in morphology. This mesh of presynaptic filamentous proteins serves to concentrate synaptic vesicles in the vicinity of the active zone. The affinity with which the vesicles are bound by the mesh is probably modulated by the extent of phosphorylation at specific sites on the constituent filamentous proteins, and changes in the binding affinity result in changes in transmitter release. The structural organization of the postsynaptic density in Purkinje cell dendritic spines consists of very fine strands with adherent, heterogeneous globular proteins. Some of these globular proteins probably correspond to protein kinases and their substrates. The postsynaptic density, positioned at the site of the maximal depolarization caused by synaptic currents, apparently serves as a supporting framework for a variety of proteins, which respond to and transduce postsynaptic depolarization. At least two classes of filamentous protein fill the cytoplasm of spines with a complex mesh, which presumably contributes to maintenance of the spine shape. Membrane bound cisterns are a ubiquitous feature of Purkinje cell dendritic spines. Studies of rapidly frozen tissue with electron probe microanalysis and elemental imaging reveal that these cisterns take up and sequester calcium, which is derived from the extracellular space, and which probably enters the spine as part of the synaptic current.  相似文献   

16.
This paper provides a brief review of the historical development of our understanding of synaptic structure in the central nervous system. The basic structure of the synapse is reviewed as well as the development of ultrastructural techniques that have allowed the details of synaptic organization to be elucidated.  相似文献   

17.
The song system of birds provides a model system to study basic mechanisms of neuronal plasticity and development underlying learned behavior. Song learning and production involve discrete sets of interconnected nuclei in the avian brain. One of these nuclei, the lateral magnocellular nucleus of the anterior neostriatum (LMAN), is the output of the so-called anterior forebrain pathway known to be essential for learning and maintenance of song, both processes depending on auditory feedback. In zebra finches, only males sing and this sexually dimorphic behavior is mirrored by sexual dimorphism in neuronal structure that develops during ontogeny. Female zebra finches are not able to sing and nuclei of the song system are strongly reduced in size or even lacking, when compared to male brains. Only LMAN can be delineated as easily in females as in males. Since female zebra finches, despite being unable to sing, recognize song just as males do and form a memory for song (model acquisition) early in life, LMAN is a putative candidate for song acquisition in both sexes. Therefore, development of LMAN was studied at the cellular and ultrastructural level in both male and female zebra finches. Regressive development of dendritic spines, enlargement of neuronal cell body and nuclei size, as well as changes at the nucleolar level are events all occurring exclusively in males, when song learning progresses. The decline in synapse number and the augmentation in synaptic contact length at synapses in LMAN in males are indicative for synaptic plasticity, whereas in females synapse number and synaptic contact length remain unchanged.  相似文献   

18.
Ultrastructural studies are described that have identified in the basilar pontine nuclei (BPN), the synaptic boutons formed by the corticopontine, cerebellopontine, tectopontine, and dorsal column nucleipontine afferent projection systems. In addition, immunocytochemical studies visualized neuronal somata, dendrites, and synaptic boutons that contain immunoreactivity for GABA or the synthesizing enzyme glutamic acid decarboxylase (GAD). Based upon differences in the mode of degeneration and postsynaptic locus of degenerative synaptic boutons in the BPN, it is suggested that two types of cortical neurons and three classes of deep cerebellar nuclear cells project to the BPN. For similar reasons, it appears that two types of neurons in the dorsal column nuclei project to the BPN while only one type of afferent synaptic bouton takes origin from the superior colliculus. Furthermore it appears that the population of BPN neurons projecting to the paramedian lobule receives convergent inputs from the cutaneous periphery and the corresponding region of sensorimotor cortex. Studies employing GAD immunohistochemistry indicate that GABA-ergic neurons and axon terminals are present in the BPN and thus support the suggestion that a local inhibitory interneuron is present within the BPN. Taken together these observations suggest that basilar pontine neurons might play a more active role in the integration of various types of information destined for the cerebellar cortex than has previously been recognized.  相似文献   

19.
The Purkinje cell and their synaptic contacts have been described using (1) light microsocopy, (2) transmission and scanning electron microscopy, and freeze etching technique, (3) conventional and field emission scanning electron microscopy and cryofracture methods, (4) confocal laser scanning microscopy using intravital stain FM64, and (5) immunocytochemical techniques for Synapsin-I, PSD9-5, GluR1 subunit of AMPA receptors, N-cadherin, and CamKII alpha. The outer surface and inner content of plasma membrane, cell organelles, cytoskeleton, nucleus, dendritic and axonal processes have been exposed and analyzed in a three-dimensional view. The intramembrane morphology, in bi- and three-dimensional views, and immunocytochemical labeling of synaptic contacts with parallel and climbing fibers, basket and stellate cell axons have been characterized. Freeze etching technique, field emission scanning microscopy and cryofracture methods, and GluR1 immunohistochemistry showed the morphology and localization of postsynaptic receptors. Purkinje cell shows N-cadherin and CamKII alpha immunoreactivity. The correlative microscopy approach provides a deeper understanding of structure and function of the Purkinje cell, a new three-dimensional outer and inner vision, a more detailed study of afferent and intrinsic synaptic junctions, and of intracortical circuits.  相似文献   

20.
Failure to appreciate the consequences for stereological work of the simultaneous presence of complex-shaped perforated and disc-like non-perforated synapses in brain tissue results in underestimation of synaptic profile length and overestimation of synaptic density when measured in randomly selected ultrathin E-PTA slices. This problem can be solved by using serial slices and a calculation method which makes no assumptions about synaptic size and shape. A three-dimensional reconstruction is unnecessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号