首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The main objective of this study was to determine total oil, total phenol, antioxidant activity and mineral contents of hull‐less pumpkin seeds and also fatty acid composition of seed oils. The results indicated that total oil, total phenol content and antioxidant activity values were found between 33.04 and 46.97 %, 56.94 and 87.15 mg GAE/100 g and 0.19 and 11.75 %, respectively (p < 0.05). Linoleic, oleic, palmitic and stearic acids were the most prominent fatty acids in all genotypes. The most abundant mineral in the studied seeds, which belong to different genotypes, was potassium (2704.75–1033.63 ppm) followed by phosphorus (3569.690–9108.835 ppm) and magnesium (1275.15–3938.16 ppm) (p < 0.05). Particularly genotype‐1 was the richest seed in essential fatty acids and minerals.  相似文献   

2.
Lipophilic bioactive compounds in oils recovered from the seeds of eight pear (Pyrus communis L.) cultivars were studied. Oil yield in pear seeds ranged between 16.3 and 31.5 % (w/w) dw. The main fatty acids were palmitic acid (6.13–8.52 %), oleic acid (27.39–38.17 %) and linoleic acid (50.73–63.78 %), all three representing 96–99 % of the total detected fatty acids. The range of total tocochromanols was between 120.5 and 216.1 mg/100 g of oil. Independent of the cultivar, the γ‐tocopherol was the main tocochromanol and constituted approximately 88 %. The contents of the carotenoids and squalene were between 0.69–2.99 and 25.5–40.8 mg/100 g of oil, respectively. The β‐sitosterol constituted 83.4–87.6 % of total sterols contents, which ranged between 276.4 and 600.1 mg/100 g of oil. Three significant correlations were found between oil yield and total contents of sterols (r = ?0.893), tocochromanols (r = ?0.955) and carotenoids (r = ?0.685) in pear seed oils.  相似文献   

3.
In view of the growing demand for vegetable oil, currently exploration of some non‐conventional oils is of great concern. This study firstly analyzed the contents of fatty acids, phytosterols, and tocopherols in Catalpa ovata seed oil collected from four different Provinces in China. Then the composition of flavonoids as well as their antioxidant activities in defatted seed meal was determined. The results showed that the relative oil content in C. ovata seeds ranged from 24.0 to 36.0 % and seed oil was mainly composed of fatty acids linoleic acid (43.4–50.1 %), α‐linolenic acid (23.8–24.4 %), and oleic acid (13.1–16.2 %). The content of unsaturated fatty acids was up to 85.0 %. Sterol in seed oil mainly contained campesterol, stigmasterol, and β‐sitosterol. β‐sitosterol accounted for 74.0 % of the total sterol. The tocopherol content was 173.0–225.7 mg/100 g. Defatted seed meal from Hubei Province showed the highest content of total flavonoids (11 mg/g) and the strongest activities for DPPH radicals scavenging, ABTS radicals scavenging, and ferric reducing antioxidant power compared with other defatted seed meal in this study. Seven flavonoids were identified from C. ovata seed meal. These results suggest that C. ovata seeds may be developed as a new source of oil and can also be properly used in pharmaceuticals and cosmetics.  相似文献   

4.
The present study was conducted to know the possible influence of the seed treatment, method of extraction and geographical origin on the quality and chemical composition of argan oil. Artisanally and semiautomatically extracted argan oils, from roasted and unroasted seeds, from interior and coast areas, were studied. The quality parameters analyzed were acid value, peroxide value, K232 and K270, triacylglycerols and fatty acid composition, polar compounds, total phenols, tocopherol content and oil stability index (OSI). Seed treatment and extraction method showed a higher influence on quality parameters than geographical area; the quality parameters of the different oils were discussed. The total phenolic content in all analyzed samples was lower than 10 ppm. γ‐Tocopherol was the major tocopherol (84.4–86.4%) with a high contribution to the total tocopherol content (383–485 ppm). The OSI of the argan oil samples were well correlated (R = 0.97) with the tocopherol contents. The argan oil samples obtained from roasted seeds presented higher stability (26–38 h) than the oils from unroasted seeds (16–32 h).  相似文献   

5.
The composition of the oil and protein contents of eight Lagenaria siceraria varieties was characterized in order to evaluate their suitability as a source of edible oil and protein. The physicochemical properties and fatty acids of seed oils were determined. The oil yield ranged from 24.11 to 26.32 %. The refractive indices and relative densities of the oils fell within the narrow ranges of 1.464–1.468 and 0.857–0.907 g/cm3, respectively. The saponification value ranged from 158.48 to 179.52 mg KOH/g, unsaponifiable matter was between 0.749 and 0.937 %, and the peroxide values were lower than Codex values for vegetable oils. The principal fatty acids were linoleic (62.1–67.9 %), oleic (11.54–15.46 %), palmitic (12.13–14.03 %), and stearic (6.71–7.71 %) acids. Low linolenic acid levels were also observed (<1 %) within the range of 0.32–0.44 %. The major essential amino acids were arginine (2.04–3.77 g/100 g), leucine (1.245–1.726 g/100 g), phenylalanine (0.803–1.396 g/100 g), and lysine (0.921–1.383 g/100 g). The non‐essential amino acids were glutamic acid (2.5–4.37 g/100 g), aspartic acid (1.39–2.36 g/100 g), serine (0.69–1.19 g/100 g), glycine (0.79–1.37 g/100 g), alanine (0.72–1.37 g/100 g), and proline (0.63–1.02 g/100 g). Nine minerals (Na, Ca, Mg, K, Cu, Fe, Mn, Zn, and P) were determined with significant (p < 0.05) differences. The studied oils showed promising results and can be used in the food, cosmetics, and pharmaceutical industries. This is the first study on the eight L. siceraria seed varieties grown in Sudan, opening the way for further studies on these seeds.  相似文献   

6.
The effects of plant oils on health are being intensively studied. Many fatty acids have attracted significant scientific attention since the studies pointed them as potential nutrients. An attempt was made to analyze the variation in three major Indian Garcinia fruits for their oils, lipid sub‐classes, fatty acids and total amino acids. Solvent extraction and chromatographic techniques were used for the isolation, purification, separation and detection of these compounds. Three major Garcinia fruits G. gummigutta, G. indica and G. xanthochymus varied in their chemical composition. Oil content was significantly higher (p < 0.05) in G. xanthochymus seeds (16.9 %) when compared to 11.21 % in G. gummigutta seeds. Fatty acids observed were mainly capric, undecanoic, lauric, palmitic, stearic, oleic and linolelaidic acid. Monounsaturated fatty acids (MUFA) were predominant in both pericarp and seeds with oleic acid being the major fraction (29.24‐58.6 %). The lipid classification of Garcinia oils showed the varying percentage of neutral lipids, glycolipids and phospholipids. Oleic acid (32.91–71.54 %) was found to be the major fatty acid in neutral‐, glyco‐ and phospho‐lipids. Alanine, leucine, proline and phenylalanine were the predominant amino acids found in Garcinia fruits. The study has broadened our understanding related to the different biochemical composition of Garcinia fruits, thereby providing the groundwork that may lead to the production, utilization and application of products from Garcinia in a more efficient way.  相似文献   

7.
The seeds of 12 species ofAcacia, although rich in C-18 unsaturated acids (47.9–93.5%), have low oil content (2.5–10.2%). Highest concentration of octadecatrienoic acid was inA. lenticularis (80.3%),A. suma (76.8%) andA. tortilis (71.7%) oils.A. mollissima was rich in octadecadienoic (69.1%) andA. senegal in octadecenoic (42.5%) acids. All the seed oils showed the presence of epoxy 18:1 acid, 0.6–3.8%. The protein content of the processed seed meals ranged from 13.4–37.2%, the highest being inA. senegal. Fiber content varied from 8.8–11.9%.  相似文献   

8.
Oil was extracted from the seeds of white-flesh and red-flesh dragon fruits (Hylocereus spp.) using a cold extraction process with petroleum ether. The seeds contained significant amounts of oil (32–34 %). The main fatty acids were linoleic acid (C18:2, 45–55 %), oleic acid (C18:1, 19–24 %), palmitic acid (C16:0, 15–18 %) and stearic acid (C18:0, 7–8 %). The seed oils are interesting from a nutritional point of view as they contain a large amount of essential fatty acids, amounting to up to 56 %. In both dragon fruit seed oils, tri-unsaturated triacylglycerol (TAG) was mainly found while their TAG composition and relative percentage however varied considerably. Therefore, they showed a different melting profile. A significant amount of total tocopherols was observed (407–657 mg/kg) in which the α-tocopherol was the most abundant (~72 % of total tocopherol content). The impact of storage conditions, cold and room temperatures, on the oxidative stability and behavior of tocopherols was monitored over a 3-month storage period. During storage, the oxidative profile changed with a favorably low oxidation rate (~1 mequiv O2/week) whilst tocopherols decreased the most at room temperature. After 12 weeks, the total tocopherol content, however, still remained high (65–84 % compared to the initial oils). Hereto, the dragon fruit seed oils can be considered as a potential source of essential fatty acids and tocopherols, with a good oxidative resistance.  相似文献   

9.
GC analysis was performed to determine regiospecific distribution and FA composition in seed oils of the Aceraceae species, Acer saccharum and A. saccharinum. The oil content in the seeds was low at 5.0% in A. saccharum and 5.8% in A. saccharinum, and the main FA were linoleic (30.8 and 29.4%), oleic (21.3 and 27.6%), palmitic (10.1 and 10.5%), and cis-vaccenic (9.4 and 7.9%) acids, respectively. In addition, both oils contained long-chain monoenes of the n−9 and n−7 groups, including 11-eicosenoic, 13-docosenoic, 15-tetracosenoic, 13-eicosenoic, and 15-docosenoic acids, whereas γ-linolenic acid accounted for 0.8% of total FA in A. saccharum, and 0.5% in A. saccharinum. Regiospecific analysis, performed using the methodology of dibutyroyl derivatives of MAG, indicated that linoleic, oleic, and linolenic acids were mainly esterified at the internal position of TAG in both seed oils, whereas long-chain monoenes of the n−7 group were almost exclusively esterified on the external positions.  相似文献   

10.
The oil yield and composition of fatty acids, tocopherols, tocotrienols, sterols, carotenoids, and squalene in the seeds of three species—Hyptis suaveolens, Leonotis nepetifolia, Ocimum sanctum—belonging to the Lamiaceae family, are studied. The oil yields are 12.1%, 16.1%, and 29.0% in O. sanctum, H. suaveolens, and L. nepetifolia, respectively. The unsaturated fatty acids are a predominant group (86.8–92.1%) in all three investigated plants; however, the profile for each species is unique. The main fatty acid differs as follows: H. suaveolens—linoleic acid (85.8%), L. nepetifolia—oleic acid (58.3%), and O. sanctum—α‐linolenic (48.6%). γ‐Tocopherol accounts for over 97%, 90%, and 93% of the total tocochromanol content (sum of tocopherols and tocotrienols) in H. suaveolens, L. nepetifolia, and O. sanctum, respectively. Two tocotrienol homologues, α and γ, are detected only in L. nepetifolia. β‐Sitosterol is the main detected sterol (38–59%) in all three species. High levels of campesterol (18–20%), Δ5‐stigmasterol (9–21%), and Δ5‐avenasterol (7–12%) are also detected. Squalene is detected only in O. sanctum (45.8 mg/100 g oil). The content of sterols, tocochromanols, and carotenoids in the investigated Lamiaceae plant seed oils ranges between 279.5–576.3, 54.5–66.7, and 0.3–3.1 mg/100 g oil, respectively. Practical Applications: Lamiaceae plants are of medicinal interest due to the presence of a broad spectrum of bioactive molecules. The present study demonstrates that seeds of the species H. suaveolens, L. nepetifolia, and O. sanctum are rich sources of bioactive compounds of lipophilic nature. There is limited knowledge associated with the composition of tocopherols, tocotrienols, sterols, carotenoids, and squalene. The results of the studied medicinal plants may enhance future targeted applications in various sectors.  相似文献   

11.
Chemical composition and physical properties of CW88‐OL and CW99‐OL cultivars of high oleic safflower seeds and their hexane‐extracted oils were determined. Dry‐based seed composition of CW88‐OL and CW99‐OL was: moisture = 4.29 and 4.23 %, oil = 42.29 and 46.44 %, Crude protein = 20.94 and 16.41 %, neutral detergent fiber = 28.11 and 28.49 %, ash = 1.55 and 2.01 %, phosphorus content = 2033 and 3995 mg/kg, respectively. Major fatty acids in oils were ~78 % oleic (O), ~13 % linoleic (L), ~5 % palmitic (P) and ~2 % stearic (St) acids, for both cultivars. The main triacylglycerols were OOO (~50 %), OOL (~20 %), SOL + OPO (~10 %), and LLP (~5 %). The oil composition of CW88‐OL and CW99‐OL in main minor components was: α‐tocopherol = 582 and 551 mg/kg, total sterols = 3996 and 3362 mg/kg, phospholipids = 22 and 21 mg/kg and wax content = 70 and 74 mg/kg. For both cultivars, density and viscosity of the oils between 25 and 55 °C varied from 903.4 to 912.6 kg/m3 and 63 to 23 mPa.s showing linear and exponential behaviors, respectively. The refractive index was 1.4694. The CIELab color parameters were: 89.69 and 89.53 (L*), ?3.72 and ?3.07 (a*), and 47.28 and 47.78 (b*) (CW88‐OL and CW99‐OL, respectively). Thus, the high oil content of the seeds and nutritional quality of the oil accompanied by low levels of waxes and phospholipids makes the cultivars studied promising for producers and consumers.  相似文献   

12.
Studies Upon Phospholipid Composition of some Glyceride Oils from Family Apiaceae Composition of phospholipids in the 9 plant glyceride oils from family Apiaceae: caraway (Carum carvi L.), cummin (Cuminum cyminum L.), fennel (Anethum graveolens L.), coriander (Coriandrum sativum L.), anise (Pimpinella anisum L.), parsley (Petroselinum sativum Hoffm.), fenchen (Foeniculum vulgare Mill.), carrot (Daucus carota L.) and celery (Apium graveolens L.) have been studied using a 2-directional thin-layer chromatography technique. Phospholipid content is 1.7% - 3.7% in glycerid oils and 0.2% - 0.5% in seeds. Phosphatidylcholin (38.5%-51.1%), phosphatidylinositol (18.6% - 32.0%) and phosphatidylethanolamine (9.3% - 18.6%) have been identified as major components in all of these glyceride oils. Minor components are: Phosphatidic acids, phosphatidylserine, phosphatidylglycerols, lysophosphatidylcholin and lysophosphatidylethanolamine.  相似文献   

13.
Cleome icosandra grows wild in abundance all over India. The seeds contain 26% of oil. The iodine value of the fresh and the stored oils was found to be 125–126 and saponification value as 205. The oil contains only a small amount of saturated acids (21–22%), viz. myristic (1–1.2%), palmitic (13–14%) and stearic [6–7%] and high amounts of unsaturated acids, viz. oleic (12–14%), linoleic (65–66%). Due to the high linoleic content the oil polymerises during storage. The degree of polymerisation is higher with the oil extracted from stored seeds which was kept over a period of three months than the oil obtained from fresh seeds under identical conditions. The short crop period, ease of collection of seeds from forest areas and the desirable tendency of polymerisation suggest the exploitation of this oil for industrial use.  相似文献   

14.
Annona squamosa and Catunaregam nilotica seeds and oils were characterized for their approximate analysis and physico-chemical properties. The oil and protein contents were 26.8, 17.5 and 40.0, 22.2%, in A. squamosa and C. nilotica seeds, respectively. The oils were extracted using cold extraction (CE) and Soxhlet extraction (SE) methods. Fatty acids and tocopherols were determined by GC–MS and HPLC, respectively. Generally the physico-chemical properties and fatty acids were not significantly (P ≤ 0.05) affected by the extraction methods. The major fatty acids of A. squamosa oil extracted by CE and SE were oleic 49.2 and 50.5%, linoleic 22.3 and 22.7%, palmitic 15.6 and 15.2%, and stearic 10.6 and 9.3%, respectively. While the major fatty acids in C. nilotica oil extracted by CE and SE were oleic 10.5, and 10.4%, linoleic 63.1 and 63.4%, palmitic 9.7 and 9.8% and stearic 5.1 and 5.4%, respectively. The tocopherol content of CE and SE extracted oils from A. squamosa amounted to 16.6 and 15.5 and from C. nilotica amounted to 110.5 and 107.7 mg/100 g oil, respectively, with delta-tocopherol as the predominant tocopherol in A. squamosa oil, and beta-tocopherol in C. nilotica oil. The total amount of amino acids was found to be 7.266 and 14.202 g/100 g protein, in seeds of A. squamosa and C. nilotica, respectively.  相似文献   

15.
Trichosanthes kirilowii Maxim (T. kirilowii) seeds from four geographical locations (Changxing, Quzhou, Yuexi, Dongzhi) contained 26.15–49.41% oil and 28.68–37.90% protein. The seed oil was distinguished by the conjugated linolenic acids, punicic acid (PA) and α-eleostearic acid (α-ESA). The main fatty acids in T. kirilowii seed oils were ranked in the following order: punicic acid (33.09–39.15%), linolenic acid (33.77–38.66%), oleic acid (15.15–24.88%), palmitic acid (2.36–4.86%). PA was the main isomer of CLNA (33.09–39.15%). No significant differences were found either in PA content or in α-ESA content of T. kirilowii seed from these geographical locations. Little difference was observed in the quantitative composition of the lipid contents of seeds from different geographical locations. The α-tocopherol content of T. kirilowii seed ranged from 6.34 to 31.74 mg/100 g, with the highest levels in Changxing seeds. The present results showed that T. kirilowii seeds were especially rich in PA, and their contents were not influenced by the geographical locations. Variation in some proximate compositions by geographical locations may be caused by ecological conditions, temperature, climate condition, technical and cultural conditions.  相似文献   

16.
Combretum collinum, Combretum micranthum, Combretum nigricans, and Combretum niorense are abundant unconventional seed oils of the African savannah. In this study, the proximate, mineral, amino acid, fatty acid, and triacylglycerol compositions of the four seed oils were quantified, and the oxidative and physicochemical properties were investigated. The amino acid, fatty acid, and triacylglycerol compositions were determined by using high performance liquid chromatography (HPLC) and gas chromatography respectively. Carbohydrates (57.35%–64.20%) followed by crude oils (20.07%–22.60%), proteins (11.95%–15.86%), and ashes (3.78%–6.19%) were the main constituents of the four seed species. The highest ash, crude fat, and protein contents were found in C. collinum, C. nigricans, and C. niorense, respectively. All four seed species were rich in Ca, K and Mg, and poor in methionine, cysteine, and lysine. The four seed oils had high saponification values (198.46–202.71 mgKOH/g), low acidity (1.12–2.26 mg of KOH/g of oil), and peroxide values (1.19–1.98 mEqO2/kg of oil). The seed oils of C. micranthum and C. collinum exhibited the highest thermal oxidative stability (8.10 and 9.79 h at 160°C). Oleic (40.49%–56.69%), palmitic (15.17%–24.27%) and linoleic (9.49%–14.50%) acids were the predominant fatty acids of the four seed oils. The results showed that the four seed species and seed oils had good chemical composition and physicochemical properties making them suitable for food and non-food application.  相似文献   

17.
The seeds of sevenHibiscus (Malvaceae) species, viz.,H. surattensis, H. vitifolius, H. hirtus, H. punctatus, H. zeylanicus, H. micranthus andH. solandra, contained 13–17% oil. Linoleic acid predominated (43.9–67.6%) in the component fatty acids of all the oils, followed by palmitic (15.1–30.1%) and oleic acids (5.9–24.8%), while malvalic, sterculic, dihydrosterculic and epoxy acids were present in small concentrations (1.7–8.4, 0.6–3.9, trace-2.1, trace-0.5%, respectively).  相似文献   

18.
The lipid content and fatty acid (FA) composition of seeds from the Asian ginseng Panax ginseng growing naturally in taiga forests of the Russian Far East and seeds from cultivated ginseng were studied in this work. The total lipid content of seeds from both wild and cultivated plants was 9–12 % of fresh weight. FA were analyzed as isopropyl esters on a polar capillary column BD‐225, which allows good separation of petroselinic and oleic acids. The structure of FAs was confirmed using GC–MS of fatty acid methyl ester (FAME) and 4,4‐dimethyloxazoline derivatives. In all the seed samples, the major FA was petroselinic acid 18:1(n‐12) which comprised more than 60 %; the contents of oleic and linoleic acids were lower (15–17 and 15–16 %, respectively). Earlier, a higher level (>80 %) of oleic acid had been reported for ginseng seeds. This discrepancy can be explained by an insufficient separation of these acids on standard columns used for GC of FAME. In general, seeds of wild and cultivated ginseng are very similar in lipid content and FA composition.  相似文献   

19.
Carotenoids and vitamin E in oils from the market – 6 rapeseed and 6 sunflower oils, half of each cold pressed and refined – and in the oils of rape, sunflower, flax and safflower as well as the respective seeds and press cakes from a local oil mill were quantified by HPLC. Furthermore, a photometric determination of carotenoid content was tested and checked against the chromatographic method. In the cold pressed oils minor amounts of xanthophylls (allE)‐lutein and (allE)‐zeaxanthin were determined. With exception of traces of (allE)‐β‐carotene in cold‐pressed rapeseed oil this provitamin A active compound did not occur. Cold pressed rapeseed oils contained 0.5–1.5 mg total carotenoids/100 g which was manifold the content of the further oils. Vitamin E was found in all vegetable oils at plant‐typic tocopherol patterns. The photometric determination of carotenoids resulted in significantly higher concentrations compared to the HPLC. This overestimation bases on the carotenoid pattern which was validated by comparison with known high‐carotenoid materials, i.e. maize flour with an abundant amount of xanthophylls and carrots with an abundant amount of carotenes.  相似文献   

20.
The oil contents of seeds from paprika (Capsicum annuum L.) collected from different locations in Turkey and Italy varied in a relatively wide range from 8.5 g/100 g to 32.6 g/100 g. The fatty acid, tocopherol and sterol contents of the oils from different paprika seeds were investigated. The main fatty acids in paprika seed oils were linoleic acid (69.5–74.7 g/100 g), oleic acid (8.9–12.5 g/100 g) and palmitic acid (10.7–14.2 g/100 g). The oils contained an appreciable amount of γ‐tocopherol (306.6–602.6 mg/kg), followed by α‐tocopherol (7.3–148.7 mg/kg). The major sterols were β‐sitosterol (1571.4–4061.7 mg/kg), campesterol (490.8–1182.7 mg/kg), and Δ5‐avenasterol (374.5–899.6 mg/kg). The total concentration of sterols ranged from 3134.0 mg/kg to 7233.7 mg/kg. Remarkable amounts of cholesterol were found in the different samples (164.6–491.0 mg/kg). The present study showed that paprika seeds are a potential source of valuable oil that could be used for edible and industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号