首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The principles of extrusion cooking are summarised. In small scale trials good extracts were obtained from extruded barley when it was mashed with industrial enzymes, using a programmed temperature cycle. Extruded barley, wheat and maize and wheat flour yielded acceptable levels of extract when mashed with lager malt (70%) using a programme with 1 hour rests at 50°C and 65°C. The extracts obtained from these grists were increased above those obtained from grists of lager malt alone and the viscosities of the worts were reduced when the mashes were supplemented by preparations of bacterial enzymes. Enzyme additions also improved extract recoveries from all-malt mashes and reduced the viscosities of the derived worts. Using a temperature programmed mashing cycle and supplementary enzymes beers were prepared from a lager malt grist and grists in which the lager malt was partly replaced, by 30%, with extruded barley or extruded wheat, or extruded maize or wheat flour pellets. In every case wort was recovered relatively easily, the worts fermented normally and the beers were all fully acceptable, although their flavours did differ. However, in contrast to results of preliminary brewing trials, the head retentions of the beers made with adjuncts were unusually low, possibly because of particular enzyme additions.  相似文献   

2.
Small scale mashes (50 g total grist) with grists containing up to 50% by weight of extruded whole sorghum produced worts of high extract yield and low viscosity. Increasing the proportion of extruded sorghum in the grist resulted in decreasing wort filtration volume, total nitrogen and free amino nitrogen content. The wort filtration behaviour of mashes containing sorghum extruded at 175°C was superior to that of mashes containing sorghum extruded at 165°C or 185°C. The results from such small scale mashing experiments suggested that extruded sorghum compared favourably to extruded barley and extruded wheat as a brewing adjunct. Worts and beers were produced on a pilot brewery scale (100 1) from grists comprising 70% malt + 30% extruded sorghum and 100% malt under isothermal infusion mashing conditions. Mashes containing sorghum extruded at 175°C showed comparable wort filtration behaviour to that of the all malt control mash whereas mashes containing sorghum extruded at 165°C or 185°C showed poor wort filtration behaviour. Worts produced from grists containing extruded sorghum fermented more quickly than the control wort and attained lower values of final gravity. The resulting beers were filtered without difficulty. Beers produced from grists containing extruded sorghum contained lower levels of total nitrogen and free amino nitrogen compared to the control beer consistent with extruded sorghum contributing little or no nitrogenous material to the wort and beer. Beers brewed from grists containing extruded sorghum were of sound flavour and showed reasonable foam stability behaviour.  相似文献   

3.
Barley malt is the preferred brewing material these days because of its high extract content and high enzyme activities. However, when substituting malted barley with oats to create a unique beer flavor and aroma, endogenous malt enzymes become the limiting factor. Therefore, the objectives of this study were to evaluate the effect of 10–40 % unmalted oats on the quality of high-gravity mashes/worts and to investigate the limitations of endogenous malt enzymes as well as the benefits of the application of industrial enzymes. The enzyme mix Ondea® Pro was found to be particularly suitable for mashing with unmalted oats and was therefore used in the present rheological tests and laboratory-scale mashing trials. In order to gain detailed information about the biochemical processes occurring during mashing, the quality of mashes was comprehensively analyzed after each mash rest using standard methods described by Mitteleuropäische Brautechnische Analysenkommission and Lab-on-a-Chip capillary electrophoresis. Mashing with up to 40 % oats resulted in increased mash consistencies, color/pH (20 °C) values, β-glucan concentrations, wort viscosities 12.0 %, and filtration times as well as decreased FAN and extract contents. The application of Ondea® Pro enormously increased the color of worts despite lower pH values but considerably improved the quality and processability of 30 or 40 % oat-containing mashes/worts. However, the substitution of up to 20 % barley malt with unmalted oats can easily be realized without the addition of exogenous enzymes.  相似文献   

4.
Small scale mashes (50 g total grist) with grists containing high proportions of raw sorghum (50%–80% malt replacement) showed high values of extract recovery and produced worts of lower total nitrogen, free amino nitrogen, viscosity and colour but higher values of pH compared to worts produced from all malt mashes. Increasing the proportion of raw sorghum in the grist relative to malt resulted in a decline in extract recovery, wort total nitrogen, free amino nitrogen and an increase in wort pH. Addition of industrial enzyme preparations to mashes containing raw sorghum resulted in higher values of extract recovery (enzyme preparations containing α amylase and β glucanase), higher values of wort total nitrogen and free amino nitrogen (enzyme preparations containing a neutral proteinase) and decreased wort viscosity (enzyme preparations containing β glucanase or cellulases) compared to worts produced from untreated mashes. Worts and beers were produced on a pilot brewery scale from 50% malt and 50% polished (whole) sorghum (single decoction mashing regime) and 20% malt and 80% raw sorghum supplemented with an industrial enzyme preparation (double mashing regime). Mashes comprising 50% malt and 50% polished sorghum showed comparable wort filtration behaviour (lautering) to that of control mashes (70% malt and 30% maize grists) whereas wort produced from 20% malt and 80% raw sorghum filtered slowly. Worts produced from grists containing sorghum were of high fermentability and showed lower levels of total nitrogen and free amino nitrogen compared to control worts. Analysis of worts produced from small scale mashes containing raw sorghum and a pilot brewery scale mash comprising 20% malt and 80% raw sorghum demonstrated that the levels of total nitrogen and free amino nitrogen were higher than expected from the reduction in the malt content of the mash, consistent with the release of nitrogenous components (polypeptides, peptides and amino acids) derived from sorghum into the wort. Beers produced from 50% malt and 50% polished sorghum and 20% malt and 80% raw sorghum were filtered without difficulty and were of sound flavour. Beers produced from 50% malt and 50% polished sorghum contained lower levels of isobutanol, 2-methylbutanol, dimethylsulphide and higher levels of n propanol and diacetyl compared to control beers.  相似文献   

5.
Brewing with high levels of unmalted oats (Avena sativa) has proven to be successful despite their high contents of β-glucan, protein, and fat. However, little is known about the effect of different oat cultivars on the quality and processability of mashes and worts. Therefore, the aim of this study was to compare the mashing performance of eight oat cultivars, selected because of their low contents of β-glucan, protein, fat, and/or high starch content, when substituting 20 or 40 % barley malt. For this purpose, seven husked (A. sativa L. ‘Lutz’, ‘Buggy’, ‘Galaxy’, ‘Scorpion’, ‘Typhon’, ‘Ivory’, ‘Curly’) and one naked oat cultivar (A. sativa var. nuda ‘NORD 07/711’) were fully characterized using standard methods, Lab-on-a-Chip capillary electrophoresis, and scanning electron microscopy. The rheological behavior of mashes containing up to 40 % of each oat cultivar was measured during mashing by applying a Physica MCR rheometer. In addition, the quality of worts obtained from laboratory-scale mashing trials was analyzed particularly with regard to their cytolytic, proteolytic, and amylolytic properties. The substitution of up to 40 % barley malt with husked or naked oats resulted in significantly higher pH values, β-glucan contents, and viscosities as well as significantly lower soluble nitrogen and polyphenol contents, color values, filtration rates, and apparent attenuation limits. Naked oats contained significantly less β-glucan as well as more protein and starch than the seven husked oat cultivars. The replacement of barley malt with naked oats resulted in a constant extract yield, whereas the use of husked oats caused significant extract losses.  相似文献   

6.
Preliminary microbiological studies carried out on sorghum grains showed that the major microorganisms found were mainly bacteria and that aflatoxin‐producing fungi were not found. The effect of added commercial enzyme preparations and different infusion mashing temperatures on extract yield, from sorghum malted at 30 °C, was studied. The infusion mashing method (65 °C) developed for mashing well‐modified barley malt produces poor extract yields with sorghum malt. The extract yield from the sorghum malt in this study was very low with infusion mashing at 65 °C, without the addition of commercial enzyme preparations. A higher extract yield was obtained from the sorghum malt, without the commercial enzyme addition, when using infusion mashing at 85 °C. Both infusion mashing temperatures (65 and 85 °C) showed an improved extract yield over the control malt when commercial enzyme preparations were used during mashing of the sorghum malt. The added enzyme preparations resulted in a higher extract yield from the germinated sorghum when infusion mashing was performed at 65 °C over mashing at 85 °C. The use of individual commercial enzymes (α‐amylase, β‐glucanase, protease, xylanase, saccharifying enzyme and combinations of some hydrolytic enzyme) increased extract yields, when complemented with the enzymes that had developed in the sorghum malt. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

7.
A mashing regime was developed using 100% raw sorghum which enabled commercially acceptable hot water extracts to be obtained in 85 minutes with minimal use of a heat stable α-amylase and proteolytic enzymes. This gave worts of HWE 295 1°/kg, with FAN levels of about 40 mg/l and ammonium ion concentration of about 60 mg/l. Higher, but commercially unacceptable, levels of proteolytic enzymes gave worts with FAN from 84.5 to 95 (mg/l). Addition of an amyloglucosidase as the commercial preparation Amylo300L, was required to convert the HWE to fermentable extract. The addition of Amylo300L, increased the DP1, DP2 and DP3 carbohydrate fractions of the worts from 22% to more than 90% of the total, compared to about 80% for a wort made from malted barley without the use of enzymes. Two different proteolytic enzymes gave different extracts and FAN contents presumably reflecting either differences in susceptibilities of the sorghum to the two enzymes or the presence of different additional enzyme activities in the different preparations. The level of ammonium ions in malted barley worts was 86 mg/l and up to 88 mg/l in worts produced from sorghum and enzymes. Enzyme addition produced increased levels of ammonia. The content of Group A (the most readily assimilated) amino acids was proportionally higher in sorghum worts compared to malted barley wort. Worts made from raw sorghum and enzymes, containing as little as 40 mg/l FAN, were fully attenuated. The yeast consumed about 35 mg/l FAN and 45 mg/l ammonium ions. Under identical fermentation conditions, the same yeast, fermenting a malted barley wort of comparable extract consumed 104 mg/l FAN and 37 mg/l ammonium ions.  相似文献   

8.
Pilot scale (1000 L) brews were carried out with a grist comprising of unmalted sorghum (50% of total wet weight of grain) (South African variety) and malted barley (50% of total wet weight of grain) grist using a mashing program with rests at 50°C, 95°C and 60°C. Mashes were supplemented with a high heat stable bacterial α‐amylase, a bacterial neutral protease and a fungal α‐amylase. A control brew containing 100% malted barley was also carried out. Saccharification difficulties were encountered during mashing, and extraction of the grist was lower for the sorghum mashes. The sorghum mashes showed comparable lautering behaviour to that of the control mash. At mashing off the sorghum worts were starch positive. Apparent degree of fermentation of the sorghum gyles were less than the control gyles. Green beer filtration proved unproblematic. The sorghum beers compared quite closely with the control beer with regard to colour, pH and colloidal stability. Foam stability deficiencies were apparent with the sorghum beer. However, the fermentability of the sorghum worts were lower. Hence the sorghum beers were lower in total alcohol. Sensory analysis indicated that no significant differences existed between the sorghum beer and both the control beer and a commercial malted barley beer with regard to aroma, mouth‐feel, after‐taste and clarity. However, the sorghum beer was found to be significantly different to both of the other beers with regard to colour, initial taste and foam stability.  相似文献   

9.
Brewing with commercial flours has the potential to reduce mashing times and improve brewhouse efficiency. At present, however, no studies are available assessing the application of commercial oat and sorghum flours as brewing adjuncts. Therefore, the objectives of this study were to evaluate the quality and processability of mashes/worts produced with 10–90 % oat or sorghum flour as well as to reveal the advantages and limitations of their use as a substitute for barley malt. For these purposes, both flour types were fully analyzed in terms of brewing-relevant characteristics using standard methods, Lab-on-a-Chip capillary electrophoresis, and scanning electron microscopy. Laboratory-scale mashing trials were performed to assess the effect of up to 90 % flour adjunct on mash/wort quality. Equivalent factors were introduced to determine the performance efficiency of different oat/sorghum flour concentrations. Commercial oat flour sourced in Ireland exhibited significantly more protein, β-glucan, and fat, less starch, ash, and polyphenols, as well as a lower starch gelatinization temperature than commercial sorghum flour obtained from the USA. Worts produced with 10–90 % oat or sorghum flour had lighter colors, higher pH values, and lower concentrations of foam-positive proteins as well as free amino nitrogen compared to 100 % barley malt worts. In terms of extract yields, the use of up to 70 % oat flour and 50 % sorghum flour, respectively, has proven economically beneficial. Worts containing up to 70 % oat flour showed a very good or good fermentability, those containing 30–50 % sorghum flour resulted, however, in a lower alcohol production.  相似文献   

10.
Starch hydrolysis in malting and mashing processes was studied by gel chromatography on Sepharose Cl 4B. The final molecular weight distribution of starch components in malt differs from those in barley. During malting a molecular weight fraction close to the void volume appears as an intermediate product. Minor differences in starch hydrolysis in mashes with different malts is obtained, though the final dextrin composition of the worts is similar.  相似文献   

11.
The objective of this study was to develop a temperature programmed mashing profile for 100% buckwheat malt. Both standard brewing methods and a rheological tool (Rapid Visco Analyser) were used to characterise worts and mashes. An optimal grist: liquor ratio of 1:4 was observed. At this ratio, buckwheat malt showed a gelatinisation temperature of 67°C and barley malt 62°C. A one hour stand at 65°C exhibited higher FAN levels, fermentable extracts and lower viscosity values than stands at 67°C or 69°C, and was therefore used in further mashing trials. An extra mashing step of 30 min, at any of the tested temperatures, increased extract values a minimum of 4%, decreased viscosities a minimum of 0.20 mPas, and increased fermentable extracts 12%. Best results were obtained when a mashing‐in temperature was used in the range of 35°C to 45°C. These mashing‐in temperatures were used to design an optimal mashing procedure: 15 min at 35°C; 15 min at 45°C; 40 min at 65°C; 30 min at 72°C; 10 min at 78°C. This program showed higher extract values and fermentable extract values (72.7% and 49.9%) than obtained by congress mashing (65.3% and 40.0%), thus successfully optimising the mashing program.  相似文献   

12.
Research reports on extracts, proteins, total nitrogen and free amino nitrogen content of sorghum malt and worts obtained from mashes indicate that sorghum is potentially an alternative substrate for conventional beer brewing in the tropics. Remarkable variations in biochemical characteristics among different sorghum cultivars affect their optimal malting conditions. Factors such as temperature and time of steeping and germinating of grains with their intrinsic enzymic activities, and kilning temperature determine the quality of malt. Further works on mashing, viscosity and fermentability of worts as well as the character of the resulting beers, such as alcoholic content, colour, taste and specific gravity tend to confirm the status of sorghum as a credible substitute for barley in beer brewing. This review reports on progress made in the use of sorghum for brewing beer.  相似文献   

13.
Sorghum malt α-glucosidase activity was highest at pH 3.75 while that of barley malt was highest at pH 4.6. At pH 5.4 employed in mashing sorghum malt α-glucosidase was more active than the corresponding enzyme of barley malt. α-Glucosidase was partly extracted in water but was readily extracted when L-cysteine was included in the extraction buffer, pH 8. Sorghum malt made at 30°C had higher α-glucosidase activities than the corresponding malts made at 20°C and 25°C. Nevertheless, the sorghum malts made at 20°C and 25°C produced worts which contained more glucose than worts of malt made at 30°C. Although barley malts contained more α-glucosidase activity than sorghum malts, the worts of barley had the lowest levels of glucose. The limitation to maltose production in sorghum worts, produced at 65°C, is due to inadequate gelatinization of starch and not to limitation to β-amylase and α-amylase activities. Gelatinization of the starch granules of sorghum malt in the decantation mashing procedure resulted in the production of sorghum worts which contained high levels of maltose, especially when sorghum malt was produced at 30°C. Although the β-amylase and α-amylase levels of barley malt was significantly higher than those of sorghum malted optimally at 30°C, sorghum worts contained higher levels of glucose and equivalent levels of maltose to those of barley malt. It would appear that the individual activities of α-glucosidase, α-amylase and β-amylase of sorghum malts or barley malts do not correlate with the sugar profile of the corresponding worts. In consequence, specifications for enzymes such as α-amylase and β-amylase in malt is best set at a range of values rather than as single values.  相似文献   

14.
Beer production with up to 40% unmalted cereals such as barley, wheat, rice and maize is legally allowed and thus practised in many European countries. The use of oats and sorghum as brewing adjuncts has great potential for creating new beer types/flavours and saving costs. In contrast to oats, sorghum is not as well known within Europe; however, its versatility makes it a very promising crop for exploitation in these temperate‐zone regions. This review describes the brewing‐relevant characteristics of unmalted oat and sorghum grain, investigates the role and properties of endogenous/exogenous enzymes during mashing, discusses the processability/quality of mashes, worts and beers produced with up to 40% oat or sorghum adjunct, and examines the effectiveness/limitations of endogenous enzymes as well as the benefits of the application of exogenous enzymes. Copyright © 2014 The Institute of Brewing & Distilling  相似文献   

15.
Using the Bradford assay that measures total protein, there is a detectable lowering of polypeptide that occurs as the temperature is raised to conversion temperature, though not at the lower temperature (45oC) at which mashing was started. However, this decrease in total soluble protein is not enzyme catalysed. There appears to be no impediment to proteinase action in mashes, as added proteolytic enzymes can lower the level of detectable protein. Comparison of worts made from the same malt using a Hot Water Extract procedure and a Cold Water Extract test illustrates that the protein distribution in the latter (monitored using SDS‐polyacrylamide gel electrophoresis) is much the more complicated. It is concluded that proteolysis does occur in mashes through the action of endogenous proteinases, but that this does not manifest itself in a detectable change in soluble protein as measured by a general protein assay procedure. © 2020 The Institute of Brewing & Distilling  相似文献   

16.
Proso millet is a gluten‐free cereal and is therefore considered a suitable raw material for the manufacturing of foods and beverages for people suffering from celiac disease. The objective of this study was to develop an optimal mashing procedure for 100% proso millet malt with a specific emphasis on high amylolytic activity. Therefore, the influence of temperature and pH on the amylolytic enzyme activity during mashing was investigated. Size exclusion chromatography was used to extract different amylolytic enzyme fractions from proso millet malt. These enzymes were added into a pH‐adjusted, cold water extract of proso millet malt and an isothermal mashing procedure was applied. The temperatures and pH optima for amylolytic enzyme activities were determined. The α‐amylase enzyme showed highest activity at a temperature of 60°C and at pH 5.0, whereas the β‐amylase activity was optimum at 40°C and pH 5.3. The limit dextrinase enzyme reached maximum activity at 50°C and pH 5.3. In the subsequent mashing regimen, the mash was separated and 40% was held for 10 min at 68°C to achieve gelatinisation. The next step in the mashing procedure was the mixture of the part mashes. The combined mash was then subjected to an infusion mashing regimen, taking the temperature optima of the various amylolytic enzymes into account. It was possible to obtain full saccharification of the wort with this mashing regimen. The analytical data obtained with the optimised proso millet mash were comparable to barley wort, which served as a control.  相似文献   

17.
A procedure is given for assessing that proportion of wort viscosity which is attributable to β-glucan. Worts obtained from unkilned samples of malt which have been processed for 54 or 72 h show enhanced viscosity. This is principally due to β-glucan although the contribution of other constituents, absent from the wort of fully modified malt, is of significance. Barley variety is shown to have a pronounced effect on wort viscosity. Insoluble β-glucan is brought into solution in mashes at 65° C. The β-glucan isolated from malt which has been inactivated using aqueous ethanol prior to extraction at 65° C, is of higher specific viscosity than that isolated from control worts prepared at the same temperature. The introduction of a rest by mashing initially at 40° C results in the production of wort of lower viscosity, a decrease in the β-glucan content of the wort and a reduction in the specific viscosity of the β-glucan. There is no apparent relationship between the endo-β-glucanase content of the malts and either the viscosity of derived worts or the degree of breakdown of β-glucan which occurred during malting and mashing. Abrasion of barley, which is a factor assisting the distribution of enzymes during malting, acts to reduce wort viscosity.  相似文献   

18.
The aim was to establish if a substantial increase in hydrophobic polypeptides could be achieved during high gravity mashing. When worts with gravities ranging from 5–20°P were analysed for hydrophobic polypeptide content it was found that there was no appreciable increase in hydrophobic polypeptide levels. Remashing of the spent grains from low and high gravity mashes demonstrated that this resulted from inefficient extraction of hydrophobic polypeptide levels during the mashing process. For example, wort produced from remashed high gravity spent grains contained 150 mg/L hydrophobic polypeptides compared to only 10 mg/L in the low gravity remashed spent grains. Experiments were conducted, employing standard mashing techniques, in an attempt to increase the extraction of hydrophobic polypeptides during high gravity mashing. Thus the use of gypsum, proteolytic stands, varying liquor to grist ratios and wheat malt addition were all investigated for their effect on hydrophobic polypeptide extraction during high and low gravity mashing. Wort analysis demonstrated that none of the techniques employed had a significant effect on hydrophobic polypeptide extraction. When wort from remashed spent grains was used as mashing in liquor for a fresh mash and the resultant worts analysed for hydrophobic polypeptides it was observed that no increase in hydrophobic polypeptide extraction was achieved. For example, wort from the remashed high gravity spent grains, containing 140 mg/L hydrophobic polypeptides, when used as mashing-in liquor, produced no increase in hydrophobic polypeptide levels in the resultant high gravity wort (230 mg/L) when compared to a high gravity wort produced using distilled water as mashing-in liquor (255 mg/L). It is therefore concluded that a saturation point has been reached and no more hydrophobic polypeptides can be extracted during mashing regardless of the procedures employed.  相似文献   

19.
In this study four strains of lactic acid bacteria (LAB) were chosen to bioacidify a mash containing 50% barley and 50% malt. The strains were isolated from malted and unmalted barley and assayed for extracellular enzymatic activities (proteases, amylases, β‐glucanases). The biologically acidified mash was compared to a chemically acidified mash, 100% malt mash un‐acidified and 50% malt and 50% barley mash unacidified. Characteristics such as pH, extract, colour, viscosity, total soluble nitrogen (TSN), free amino nitrogen (FAN), apparent fermentability, β‐glucan and lautering performance of the resultant worts were determined. A model lautering system replicating one used in a brewery was designed and built in University College Cork (UCC) to measure the lautering performance of the bioacidified mashes. The new system was compared to the filtration method used in EBC method 4.5.1. Overall the addition of LAB to bioacidify a mash of 50% barley and 50% malt resulted in faster filtration times, which correlated with decreased β‐glucan levels. Proteolytic LAB had a positive influence on the quality of wort and resulted in increased FAN levels. Lighter colour worts were observed along with increased extract levels.  相似文献   

20.
The effects on wort quality when mashing with unmalted sorghum (0–100%) and malted barley (100–0%) in combination with industrial enzymes were evaluated. A mashing program with temperature stands at 50°C, 95°C and 60°C was used. Different combinations of commercial enzymes were evaluated. A heat stable α‐amylase was found to be essential for efficient saccharification. The inclusion of a fungal α‐amylase in mashes with a high sorghum content improved filtration rates to that of 100% malted barley mashes. Addition of a bacterial protease increased the amount of nitrogen solubilisation and peptide degradation. An increase of the relative proportion of sorghum in the grist resulted in decreases in wort filtration, colour, viscosity, attenuation limit, free amino nitrogen, high molecular weight nitrogen, and a corresponding increase in pH (p < 0.01). Overall the addition of malted barley in small proportions to unmalted sorghum mashes together with commercial enzymes was found to improve the potential for brewing a high quality lager beer from unmalted sorghum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号