首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lateral resolution of a surface sensitive low-energy electron microscope (LEEM) has been improved below 4 nm for the first time. This breakthrough has only been possible by simultaneously correcting the unavoidable spherical and chromatic aberrations of the lens system. We present an experimental criterion to quantify the aberration correction and to optimize the electron optical system. The obtained lateral resolution of 2.6 nm in LEEM enables the first surface sensitive, electron microscopic observation of the herringbone reconstruction on the Au(1 1 1) surface.  相似文献   

2.
Vladár AE  Radi Z  Postek MT  Joy DC 《Scanning》2006,28(3):133-141
Experimental nanotips have shown significant improvement in the resolution performance of a cold field emission scanning electron microscope (SEM). Nanotip electron sources are very sharp electron emitter tips used as a replacement for the conventional tungsten field emission (FE) electron sources. Nanotips offer higher brightness and smaller electron source size. An electron microscope equipped with a nanotip electron gun can provide images with higher spatial resolution and with better signal-to-noise ratio. This could present a considerable advantage over the current SEM electron gun technology if the tips are sufficiently long-lasting and stable for practical use. In this study, an older field-emission critical dimension (CD) SEM was used as an experimental test platform. Substitution of tungsten nanotips for the regular cathodes required modification of the electron gun circuitry and preparation of nanotips that properly fit the electron gun assembly. In addition, this work contains the results of the modeling and theoretical calculation of the electron gun performance for regular and nanotips, the preparation of the SEM including the design and assembly of a measuring system for essential instrument parameters, design and modification of the electron gun control electronics, development of a procedure for tip exchange, and tests of regular emitter, sharp emitter and nanotips. Nanotip fabrication and characterization procedures were also developed. Using a "sharp" tip as an intermediate to the nanotip clearly demonstrated an improvement in the performance of the test SEM. This and the results of the theoretical assessment gave support for the installation of the nanotips as the next step and pointed to potentially even better performance. Images taken with experimental nanotips showed a minimum two-fold improvement in resolution performance than the specification of the test SEM. The stability of the nanotip electron gun was excellent; the tip stayed useful for high-resolution imaging for several hours during many days of tests. The tip lifetime was found to be several months in light use. This paper summarizes the current state of the work and points to future possibilities that will open when electron guns can be designed to take full advantage of the nanotip electron emitters.  相似文献   

3.
Inada H  Su D  Egerton RF  Konno M  Wu L  Ciston J  Wall J  Zhu Y 《Ultramicroscopy》2011,111(7):865-876
We report detailed investigation of high-resolution imaging using secondary electrons (SE) with a sub-nanometer probe in an aberration-corrected transmission electron microscope, Hitachi HD2700C. This instrument also allows us to acquire the corresponding annular dark-field (ADF) images both simultaneously and separately. We demonstrate that atomic SE imaging is achievable for a wide range of elements, from uranium to carbon. Using the ADF images as a reference, we studied the SE image intensity and contrast as functions of applied bias, atomic number, crystal tilt, and thickness to shed light on the origin of the unexpected ultrahigh resolution in SE imaging. We have also demonstrated that the SE signal is sensitive to the terminating species at a crystal surface. A possible mechanism for atomic-scale SE imaging is proposed. The ability to image both the surface and bulk of a sample at atomic-scale is unprecedented, and can have important applications in the field of electron microscopy and materials characterization.  相似文献   

4.
Mathews RG  Donald AM 《Scanning》2002,24(2):75-85
Environmental scanning electron microscopy (ESEM) is a technique capable of imaging volatile and/or insulating samples in their natural state, without prior specimen preparation. It is thus a powerful potential tool for the study of the structure and dynamics of emulsions and other complex liquid systems, at a resolution greater than that obtainable by conventional optical microscopy. We present images of a variety of liquid systems containing micron-scale and smaller features. The morphology of these systems may be clearly discerned. The contrast observed between the liquid phases was consistent with the model proposed by Stokes et al. (1998). The limits of resolution were determined by sample motion and by beam damage effects; under optimum conditions, resolution of a few tens of nanometers was obtained. This compares favourably with conventional and confocal optical microscopy. In some samples, thin films (solid or liquid) could be observed at the liquid/gas interface. Some of these films were so thin that they did not completely obscure the underlying structure of the bulk sample.  相似文献   

5.
Wight SA  Zeissler CJ 《Scanning》2000,22(3):167-172
Phosphor imaging plate technology has made it possible to directly image the distribution of primary beam electrons and scattered electrons in the environmental scanning electron microscope. The phosphor plate is exposed under electron scattering conditions in the microscope chamber. When processed, the electron intensity distribution is displayed as a digital image. The image is a visual representation of the electron probe and skirt and may provide the basis for a more accurate model.  相似文献   

6.
We report a simple method to study the elemental content in cultured human adherent cells by electron probe X-ray microanalysis with scanning electron microscopy. Cells were adapted to grow on polycarbonate tissue culture cell inserts, washed with distilled water, plunge-frozen with liquid nitrogen and freeze-dried. Unstained, freeze-dried cultured cells were visualized in the secondary and backscattered electron imaging modes of scanning electron microscopy. With backscattered electron imaging it was possible to identify unequivocally major subcellular compartments, i.e. the nucleus, nucleoli and cytoplasm. X-ray microanalysis was used simultaneously to determine the elemental content in cultured cells at the cellular level. In addition, we propose some improvements to optimize backscattered electron and X-ray signal collection. Our findings demonstrate that backscattered electron imaging offers a powerful method to examine whole, freeze-dried cultured cells for scanning electron probe X-ray microanalysis.  相似文献   

7.
A method for three‐dimensional quantitative surface characterization for scanning electron microscopy is presented. The method used a quadruple scintillator detector developed by us. A surface reconstruction algorithm was performed by special software, with new algorithms for error compensation. Among these errors, detector shadowing was of particular importance. This was due to the disturbance in integration continuity when one or more detectors was screened from the flow of electrons. Several methods for the reduction of this error have been proposed and tested by us. The methods were based on software processing of complementary information, such as unshadowed detector signals, shadow depth and modified integration schemes.  相似文献   

8.
Fluorescence techniques are widely used in biological research to examine molecular localization, while electron microscopy can provide unique ultrastructural information. To date, correlative images from both fluorescence and electron microscopy have been obtained separately using two different instruments, i.e. a fluorescence microscope (FM) and an electron microscope (EM). In the current study, a scanning electron microscope (SEM) (JEOL JXA8600 M) was combined with a fluorescence digital camera microscope unit and this hybrid instrument was named a fluorescence SEM (FL-SEM). In the labeling of FL-SEM samples, both Fluolid, which is an organic EL dye, and Alexa Fluor, were employed. We successfully demonstrated that the FL-SEM is a simple and practical tool for correlative fluorescence and electron microscopy.  相似文献   

9.
A Mg-base Laves phase was investigated by high resolution electron microscopy (HREM). Linear defects found at terminations of stacking faults were classified into three groups. The first is a partial dislocation at a termination of a stacking fault, the second is a superposed partial dislocation which is defined as a defect produced by a superposition of terminations of two or more stacking faults lying on neighbouring layers, and the third is a combined linear defect which consists of a characteristic combination of terminations of stacking faults. In the last case the total stacking fault vector becomes equal to the translation vector in the basal plane, so that the defect needs no relaxation of the lattice. The Burgers vectors of the partial dislocations were estimated with the aid of modified Burgers circuits.  相似文献   

10.
Measurements performed in an electron microscope with the mirror operation mode are most sensitive to local electric fields and geometrical roughness of any kind of the object being studied. The object with a geometrical relief is equivalent to a smooth surface with an effective distribution of microfields. Electrons forming the image interact with the local microfields for an extended time: during approach to the object, deceleration and acceleration away from the object. As a result, the electron trajectories can be strongly distorted, and the contrast changes essentially, leading to image deformation of details of the object under investigation and to lowering of the resolution. These effects are theoretically described and are illustrated by experiments. An analysis of these effects enables the real size and the shape of the object involved to be reconstructed.  相似文献   

11.
Fluorinated alkanethiol self-assembled monolayers (SAM) films immobilized on gold substrates have been used as electron-sensitive resists to map quantitatively the spatial distribution of the primary electronbeam scattering in an environmental scanning electron microscope (ESEM). In this procedure, a series of electron dose standards are prepared by exposing a SAM film to electron bombardment in well-defined regions at different levels of electron dose. Microbeam secondary ion mass spectrometry (SIMS) using Cs+ bombardment is then used to image the F- secondary ion signal from these areas. From the reduction in F- intensity as a function of increasing electron dose, a calibration curve is generated that allows conversion of secondary ion signal to electron dose on a pixel-by-pixel basis. Using this calibration, electron dose images can be prepared that quantitatively map the electron scattering distribution in the ESEM with micrometer spatial resolution. The SIMS imaging technique may also be used to explore other aspects of electron-surface interactions in the ESEM.  相似文献   

12.
Reconstructed structures at monolayer level on ‘clean and well-defined’ surfaces can be imaged by transmission electron microscopy in fixed beam illumination mode. The specimens are cleaned in-situ in the electron microscope in ultra high vacuum. Transmission electron diffraction pattern intensities can give useful information for determining the surface unit cell size of the structure, and the atom positions (geometric arrangement of atoms in the unit cell) especially those with a large unit cell, since the diffraction intensities are interpreted kinematically. High resolution surface imaging which gives directly the atom positions is tested here for a single monolayer terrace on Ag (111) surface. The result shows the value of HREM for studies of surface crystallography.  相似文献   

13.
We present an integrated light‐electron microscope in which an inverted high‐NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high‐resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub‐10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum‐compatible immersion oil. For a 40‐nm‐diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry.  相似文献   

14.
Dale E. Newbury 《Scanning》1996,18(7):474-482
The gaseous secondary electron detector (GSED) in the environmental scanning electron microscope (ESEM) permits collection of electron signals from deep inside blind holes in both conducting and insulating materials. The placement of the GSED as the final pressure-limiting aperture of the ESEM creates a situation of apparent illumination along the line of sight of the observer. In principle, any point struck by the primary beam can be imaged. Image quality depends on the depth of the hole. In brass, features at the bottom of a 1.5 mm diameter hole that was 8 mm deep were successfully imaged.  相似文献   

15.
A technique is described to allow electron microscopic investigation of a specific feature of a section on a glass slide. A section on a glass slide (previously treated with a silicone release agent) is processed as required for light microscopy. The section is then impregnated with Araldite and cured with an epoxy resin block on top of it. The section and block are removed from the slide and viewed with a light microscope. The selected area for ultrastructural study remains under continuous observation while the block is trimmed. Semi-thin (1 μm) sections retain the original staining for light microscopy and ultra-thin sections are stained with heavy metals in the normal manner. We show how an inflammatory lesion in a large area of muscle in a case of polymyositis may be quickly located and studied at the ultrastructural level.  相似文献   

16.
A. Khursheed 《Scanning》1996,18(2):81-91
Conceptual designs of scanning electron microscopes (SEMs) using a time-of-flight electron spectrometer are presented. The procedure for making quantitative measurements with such SEMs is shown to be much simpler and versatile than using conventional SEMs. SEMs which use an electron time-of-flight spectrometer are able to operate as multicontrast analytical probes, capable of simultaneously quantifying surface topography, voltage, and material type. In addition, it is demonstrated that these SEMs can be designed to have high spatial resolution, good signal-to-noise characteristics, and to be of compact table-top size.  相似文献   

17.
We demonstrate that the gas-amplified secondary electron signal obtained in the environmental scanning electron microscope has both desired and spurious components. In order to isolate the contributions of backscattered and secondary electrons, two sets of samples were examined. One sample consisted of a pair of materials having similar secondary emission coefficients but different backscatter coefficients, while the other sample had a pair with similar backscatter but different secondary emission coefficients. Our results show how the contribution of the two electron signals varies according to the pressure of the amplifying gas. Backscatter contributions, as well as background due to gas ionization from the primary beam, become significant at higher pressure. Furthermore, we demonstrate that the relative amplification efficiencies of various electron signals are dependent upon the chemistry of the gas.  相似文献   

18.
19.
G. C. Rosolen  W. D. King 《Scanning》1998,20(7):495-500
We have developed an automated image alignment system for the scanning electron microscope (SEM). This system enables specific locations on a sample to be located and automatically aligned with submicron accuracy. The system comprises a sample stage motorization and control unit together with dedicated imaging electronics and image processing software. The standard SEM sample stage is motorized in the X and Y axes with stepping motors which are fitted with rotary optical encoders. The imaging electronics are interfaced to beam deflection electronics of the SEM and provide the image data for the image processing software. The system initially moves the motorized sample stage to the area of interest and acquires an image. This image is compared with a reference image to determine the required adjustments to the stage position or beam deflection. This procedure is repeated until the area imaged by the SEM matches the reference image. A hierarchical image correlation technique is used to achieve submicron alignment accuracy in a few seconds. The ability to control the SEM beam deflection enables the images to be aligned with an accuracy far exceeding the positioning ability of the SEM stage. The alignment system may be used on a variety of samples without the need for registration or alignment marks since the features in the SEM image are used for alignment. This system has been used for the automatic inspection of devices on semiconductor wafers, and has also enabled the SEM to be used for direct write self-aligned electron beam lithography.  相似文献   

20.
Oliver C. Wells 《Scanning》1999,21(6):368-371
An electron backscattering pattern (EBSP) is formed on a fluorescent (or other) screen from the faster scattered electrons when a single-crystal region of a solid sample is illuminated by a finely focused electron beam (EB). The EBSP is very similar in appearance to the electron channeling pattern (ECP) that is obtained in the scanning electron microscope (SEM) by rocking the beam about a point on the surface of a single crystal. It has been suggested that the mechanisms that give rise to EBSP and ECP are related by reciprocity. If this is indeed the case, then the models that are used to explain them should be the same except for the direction in which the electrons travel through the specimen. The two-event “diffraction model” for EBSP (diffuse scattering followed by diffraction) fails this condition, leading to the conclusion that the “channeling in and channeling out” model for EBSP is more likely to be correct. This has been described rigorously by Reimer (1979, 1985). It is named after the title used by Joy (1994). An attempt is made here to describe this model in a simple way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号