共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
随着软件定义网络规模扩大,控制层与数据层解耦带来了诸如控制器部署等新问题。该文提出基于负载均衡的多控制器部署算法(Multi-Controller Deployment Algorithm Based on Load Balance, MCDALB)。算法首先根据网络拓扑结构及其负载情况,确定控制器数量K;然后根据控制器容量限制,提出一种近似比为2的多控制器负载均衡算法,将网络划分成K个控制区域;最后根据区域内所有交换机到控制器距离总和最小原则,在控制区域部署控制器。为了验证算法的性能,选取实际网络拓扑进行实验。实验结果表明,与AL, WL算法相比,该算法在满足控制器负载近似比为2的同时,网络最大延时差距不超过0.65 ms。 相似文献
3.
为改善软件定义网络(SDN)负载均衡问题,对传统的蚁群算法进行改进,并结合服务器负载均衡算法,提出一个改进型的联合算法。该算法使用加权最小连接调度算法,服务器端选择负载最小的服务器,并利用改进蚁群算法(Im-ACO)选择到达所选服务器的最佳路径。理论分析及实验结果表明,提出的联合算法使网络性能得到显著提高,网络吞吐量更高,丢包率更低。 相似文献
4.
城市交通车辆密度高,为解决车辆通信过程中,数据包转发时中继节点负载分配不均衡、限制车联网中吞吐量等性能问题,本文提出在基于软件定义的移动自组网络架构中引入强化路由,来自适应学习负载分配决策,根据邻居节点的带宽状态学习负载分配收益;通过强化学习构建状态-策略表,使节点在不同状态下进行带宽分配决策,最终实现SDN数据层内的车辆相互协调,寻找最优路径。仿真结果表明,该算法可实现网络负载的均衡分配。与传统的路由算法相比,当车辆数为300辆时,该算法的丢包率可低至20%以下,端到端时延低于4 s,网络能量消耗更加均衡。 相似文献
5.
在大型复杂软件定义网络中,为提高网络负载均衡,减少控制器与交换机间的传播时延,该文提出一种基于效率区间的负载均衡在线优化算法。在初始静态网络中,通过贪心算法选择初始控制器集合,并以其为根节点构建M棵改进代价的最小生成树(MST),确定初始M个负载均衡的子网;当网络流量发生变化时,通过广度优先搜索(BFS)调整子网间交换机映射关系使其满足效率区间,保证任意时刻网络的负载均衡。算法均以网络连通性为基础,且均以传播时延为目标重新更新控制器集合。仿真实验表明,该算法在保证任意时刻网络负载均衡的同时,可以保证较低的传播时延,与Pareto模拟退火算法、改进的K-Means算法等相比,可以使网络负载均衡情况平均提高40.65%。
相似文献7.
在当前的网络体系结构下,采用硬件系统实现服务器集群负载均衡存在着获取负载节点状态困难、流量导向方式复杂等制约因素,不利于提升服务器集群的伸缩性和服务性能。针对此问题,该文提出一种基于软件定义网络(SDN)的负载均衡机制(SDNLB)。该机制借助SDN具有的集中式控制和流量灵活调度优势,利用SNMP协议和OpenFlow协议对服务器的运行状态和全局网络负载信息进行实时监测,并通过权值计算的方式选择出权重最高的服务器作为流处理的目标服务器,在此基础上,采用最优转发路径算法进行流量调度,从而达到提高服务器集群的利用率与处理性能的目的。搭建了实验平台对SDNLB的性能进行仿真测试,实验结果表明:在相同的网络负载条件下,SDNLB与其他负载均衡算法相比,能够有效地降低服务器集群的负载,并能够显著提高网络吞吐量和带宽利用率,缩短流的完成时间和平均时延。 相似文献
8.
软件定义网络( SDN)为实现异构无线网络中的负载均衡提供了新的思路。设计了一种软件定义的无线网络负载均衡架构,并提出对应算法。首先,根据接收信号强度构建候选网络列表;其次,根据各候选网络的可用负载比率标准差进行负载差异分级;再次,将服务质量匹配度函数和负载均衡指数线性组合成联合优化函数,并根据负载差异分级对联合优化的权重进行动态调整,合理设置门限进行接纳控制。与传统算法相比,所提算法一方面可使各类业务阻塞率明显降低大约20%,另一方面使不同网络的归一化负载更加接近。该算法在进行网络负载均衡的同时,能够有效降低业务阻塞率,从而有效提升异构无线网络的整体性能。 相似文献
9.
在具有集中式控制特点的carrier-SDN(软件定义承载网)中应用网络虚拟化技术为虚拟网络分配资源,实现承载网资源分配是解决承载网结构僵化的重要途径。提出carrier-SDN中基于负载均衡的虚拟网络资源分配算法。首先,建立carrier-SDN多层模型;其次,根据虚拟网络映射算法的特点,二值化粒子群优化算法;最后,以负载均衡为优化目标,求解虚拟网络映射问题。仿真结果表明,与已有方法相比,所提算法在虚拟网络负载均衡性、请求接受率和网络收益方面性能优越。 相似文献
10.
多控制器体系结构的出现,解决了经典软件定义网络(SDN)架构控制层以单一集中控制器为主,在大规模网络环境中的可扩展性问题。在多控制器体系结构中,由于生成转发规则并将其填充到交换机的任务被委托给了控制器,网络的性能在很大程度上取决于控制器的放置。该文以降低总时延和均衡控制器间负载为目标,提出了一种基于子网划分的多控制器部署算法(MCPA)。该算法改造谱聚类算法以保证网络连通性并加入离群点处理算法和负载均衡处理算法。仿真结果表明,该算法能够有效地对网络进行划分,在保证网络总时延较低的情况下使各个控制器的负载保持均衡。 相似文献
11.
In recent years, web services have been largely accessed by the customer, and it increases the network traffic on the internet. To provide the services for the large number of customer, dynamic clustering concept has been implemented that provides the ability to add or remove the servers on demand. But managing and processing the large set of traffic are very complicated. Load balancing technic helps to resolve the problems of network traffic and give efficient network management. In this paper, we proposed a dynamic server load balancing algorithm (DServ‐LB) using OpenFlow switches in software‐defined networking. The OpenFlow switches support the dynamic programmability. Also, we used the sFlow protocol, which is used to monitor the servers resource information periodically and the controller. Based on the server resource availability, the controller installs forwarding rules in the OpenFlow switches. For implementation, we used Mininet for network emulation, POX controller, and Docker container as Mininet hosts. The result shows that the proposed DServ‐LB improves the overall network performance and efficiently utilizes the server resources if compared with existing load balancing algorithms. 相似文献
12.
Ali Akbar Neghabi Nima Jafari Navimipour Mehdi Hosseinzadeh Ali Rezaee 《International Journal of Communication Systems》2019,32(4)
The growth of the networks has difficult network management. Recently, a concept called software‐defined network (SDN) has been proposed to address this issue, which makes network management more adaptable. Control and forwarding planes are separated in SDN. The control plane is a centralized logical controller that controls the network. The forwarding plane that consists of transfer devices is responsible for transmitting packets. Because the network resources are limited, optimizing the use of resources in the networks is an important issue. Load balancing improves the balanced distribution of loads across multiple resources in order to maximize the reliability and network resources efficiency. SDN controllers can create an optimal load balancing compared to traditional networks because they have a network global view. The load‐balancing problem can be solved using many different nature‐inspired meta‐heuristic techniques because it has the NP‐complete nature. Hence, for solving load balancing problem in SDN, nature‐inspired meta‐heuristic techniques are important methods. However, to the best of our knowledge, there is not a survey or systematic review on studying these matters. Accordingly, in the area of the load balancing in the SDN, this paper reviews systematically the nature‐inspired meta‐heuristic techniques. Also, this study demonstrates advantages and disadvantages regarded of the chosen nature‐inspired meta‐heuristic techniques and considers their algorithms metrics. Moreover, to apply better load balancing techniques in the future, the important challenges of these techniques have been investigated. 相似文献
13.
Critical issues such as connection congestion, long transmission delay, and packet loss become even worse during epidemic, disaster, and so on. In this study, a link load balancing method is proposed to address these issues on the data plane, a plane of the software-defined network (SDN) architecture. These problems are NP-complete, so a meta-heuristic approach, discrete particle swarm optimization, is used with a novel hybrid cost function. The superiority of the proposed method over existing methods in the literature is that it provides link and switch load balancing simultaneously. The goal is to choose a path that minimizes the connection load between the source and destination in multipath SDNs. Furthermore, the proposed work is dynamic, so selected paths are regularly updated. Simulation results prove that with the proposed method, streams reach the target with minimum time, no loss, low power consumption, and low memory usage. 相似文献
14.
Software-defined networking is an emerging paradigm for supporting flexible network management. In the traditional architecture for a software-defined network (SDN), the controller commonly uses a general routing algorithm such as Open Shortest Path First (OSPF), which chooses the shortest path for communication. This may cause the largest amount of network traffic, especially in large-scale environments. In this paper, we present the design for a novel SDN-based four-tier architecture for scalable secure routing and load balancing. In Tier 1, user authentication is conducted using elliptic curve cryptography (ECC); this avoids unnecessary loads from unauthorized users. In Tier 2, packet classification is performed based on the packet characteristics using the fuzzy analytical hierarchy process (fuzzy AHP), and packets are placed into three individual queues. In Tier 3, scalable secure routing is achieved by selecting the optimal path using the improved particle swarm optimization and ant colony optimization algorithms. With these optimization algorithms, we can adaptively change the number of users, the number of switches, and other parameters. In Tier 4, the recommended secure cluster (multicontroller) management is accomplished using an algorithm that employs modified k-means clustering and a recurrent neural network. Deep reinforcement learning (DRL) is also proposed for updating the controller information. Experimental results are analyzed using the OMNeT++ network simulator, and the evaluated performance displayed improvement over a variety of existing methods in terms of response time (50% to 60%), load (55%), execution time (3.2%), throughput (9.8%), packet loss rate (1.02%), end-to-end delay (50%), and bandwidth consumption (45%). 相似文献
15.
16.
A virtual service resources controlling architecture with regional centralized management and global coordinated scheduling was proposed for the problem of cross-domain service chain mapping in SDNFV environment. On this basis, an effective mapping framework was built and the cross-domain mapping problem was modeled as an ILP with the purpose of minimizing mapping cost. A partitioning algorithm was designed to solve the problem based on Q-learning mechanism under this framework. Simulation results show that the performances of this method are better than other traditional methods on average partition time, average mapping cost, and acceptance ratioof service chain mapping request. 相似文献
17.
天基信息网络的软件定义网络应用探析 总被引:1,自引:0,他引:1
现有各种空间、地面网络节点的互连互通,在一定程度上可满足特定应用需求,但由于各节点在空间、物理以及功能的局限,限制了天基信息高效传输、融合以及按需地应用。分析了天基信息网络的发展趋势,提出了网络架构构想,并对主要关键技术的研究方向进行了梳理。在空间核心节点上采用软件定义的多功能载荷平台,并基于软件定义网络( SDN)架构和空间容中断网络协议构建天基信息网络。通过资源虚拟化、处理多元化、应用无阻化的方式,保障天基信息网络适应信息按需定制和高效共享等应用需求。 相似文献
18.
流量均衡是为了避免网络拥塞而作为流量工程中的路由优化目标提出来的,由于数据中心网络的流量特性,使得传统IP网络的流量工程方法不一定适合.为此,本文在SDN(Software Defined Network)的框架下,提出了一种基于链路关键度的自适应负载均衡流量工程方法:DraLCD(Dynamic Routing Algorithm based on Link Critical Degree).该方法通过对全局视图的网络管控,并充分利用了网络中存在的冗余路径,在完成细粒度流量均衡的同时,能够降低控制器的计算开销以及与交换机之间的通信开销,最终完成路由优化的目标.最后,基于DraLCD设计的原型系统,通过在Mininet仿真平台中部署并进行仿真实验,与现有的等开销多路径路由算法ECMP(Equal-Cost Multi-Path)以及GFF(Global First Fit)路由算法相比较,能够明显地提升网络性能. 相似文献