首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
A thermal reactor concept ‘a thorium breeder reactor’ (ATBR) was conceived and reported by the authors during 1998. The distinctive physical characteristics of ATBR core with different types of seed fuels have been discussed in subsequent publications. The equilibrium core of ATBR with Pu seed was shown to exhibit a flat and low excess reactivity for a fuel cycle duration of two years. Notably this is achieved by no conventional burnable poison but by intrinsic balancing of reactivity between fissile and fertile zones. In this paper we present the design of the initial core and the refueling strategy for subsequent fuel cycles to enable a smooth transition to the equilibrium core. Three fuel types with characteristics similar to the three batch fuels of equilibrium core were designed for the initial core. Fuel requirement for the initial core is 4673 kg of reactor grade (RG) Pu for a cycle length of two years at 1875 MWt as against the 2200 kg needed for each fuel cycle of equilibrium core for same quantum of energy. The core reactivity variation during the first fuel cycle is monotonic fall and is relatively high (∼40 mk) but gradually diminishes to ±5 mk for fuel cycles 5–8.  相似文献   

3.
4.
The article presents a procedure to qualify the Trio_U code for the prediction of the boron concentration at the core inlet of a French 900 MWe pressurized water reactor under accidental conditions (inherent dilution problem).1 The objective of this procedure is to ensure that the validation calculations are performed with the same modelling hypotheses as the full scale reactor analysis, for which usually no experimental data are available. A density driven ROCOM experiment as well as an UPTF Tram-C3 experiment have been used for the qualification of the Trio_U code. Both experiments present similar thermal hydraulic conditions as the reactor case. The predicted boron concentration at the core inlet of the reactor shows that the potential return to criticality might not be excluded in the case of a small break LOCA. Further neutronic calculations are necessary to confirm this result.  相似文献   

5.
6.
7.
中国实验快堆的安全特性   总被引:8,自引:0,他引:8  
徐銤 《核科学与工程》2011,31(2):116-126
钠冷快堆因钠具有好的热物理特性而具有固有安全性,同时也因钠是活泼的碱金属,也难免会有钠的泄漏、钠火和钠水反应等工业事故.本文介绍了中国实验快堆利用钠冷快堆的固有安全性,装设了单靠自然循环和自然对流的事故余热导出系统等多项非能动安全系统及完善的能动安全系统,其安全性达到了第Ⅳ代先进核能系统的安全要求.对于大型快堆,因其保...  相似文献   

8.
Earthquake vibrations cause large forces and stresses that can significantly increase the scram time required for safe shutdown of a nuclear reactor. The horizontal deflections of the reactor system components cause impact between the control rods and their guide tubes and ducts. The resulting frictional forces, in addition to other operational forces, delay the travel time of the control rods. To obtain seismic responses of the various reactor system components (for which a linear response spectrum analysis is considered inadequate) and to predict the control rod drop time, a non-linear seismic time history analysis is required. Nonlinearities occur due to the clearances or gaps between various components. When the relative motion of adjacent components is large enough to close the gaps, impact takes place with large impact accelerations and forces.This paper presents the analysis and results for a liquid metal fast rector system which was analyzed for both scram times and seismic responses such as bending moments, accelerations and forces. The reactor system was represented with a one-dimensional nonlinear mathematical model with two degrees of freedom per node (translational and rotational). The model was developed to incorporate as many reactor components as possible without exceeding computer limitations. It consists of 12 reactor components with a total of 71 nodes, 69 beam and pin-jointed elements and 27 gap elements. The gap elements were defined by their clearances, impact spring constants and impact damping constants based on a 50% co-efficient of restitution.The horizontal excitation input to the model was the response of the containment building at the location of the reactor vessel supports. It consists of a 10 sec safe shutdown eathquake (SSE) acceleration-time history at 0.005 sec intervals and with a maximum acceleration of 0.408 g. The analysis was performed with two Westinghouse special purpose computer programs. The first program calculated the reactor system seismic responses and stored the impact forces on tape. The impact forces on the control rod driveline were converted into vertical frictional forces by multiplying them by a coefficient of friction, and then these were used by the second program for the scram time determination.The results give time history plots of various seismic responses, and plots of scram times as a function of control rod travel distance for the most critical scram initiation times. The total scram time considering the effects of the earthquake was still acceptable but about four times longer than that calculated without the eathquake. The bending moment and shear force responses were used as input for the structural analysis (stresses, deflections, fatigue) of the various components, in combination with the other applicable loading conditions.  相似文献   

9.
The PISC III Programme involves validation of techniques and procedures and, within this programme, evaluation has now started on the ability to discriminate service induced defects from indications produced by fabrication defects in A 508 Class 2 material when sensitive techniques are used.Action No. 2 of PISC III: Full Scale Vessel Testing is designed for the performance demonstration of three groups of inspection procedures:
• - Mechanized ASME type procedures with variable recording level and complementary techniques
• - Industrial full ISI procedures (mechanized);
• - Several detailed evaluation procedures (generally mechanized) based on advanced techniques to be used on defective areas detected by usual inspection.
These procedures, typical for ISI in most of the cases, are applied in four situations which could be typical of old and new LWR pressure vessels:
• - vessel material and welds containing important service and fabrication defects but mixed with base material defects and small welding defects;
• - nozzle to shell welds with typical service defects, often well isolated and distant from other defective areas in rather clear material and/or welds;
• - nozzle inner radius defects;
• - artificially heat and unbranched fatigue defects in the test blocks assembled to simulate a PWR pressure vessel wall portion.
The paper summarizes the PISC II programme results which stress the characteristics of capable NDT techniques, in opposition to material characteristics like acceptable base material defects. It describes the full scale pressure vessel components available to conduct the PISC III exercise with improved ultrasonic techniques.  相似文献   

10.
A brief survey is made of the design of the experimental fast neutron reactor and of its basic experimental and auxiliary equipment. The reactor was designed for physical experimentation with fast neutrons. The core is composed of plutonium rods; the lateral reflector is filled with depleted uranium. Heat is removed from the core by mercury and from the uranium reflector by air. The total rated power of the reactor is 150 kw of which about 100 kw is derived from the core.  相似文献   

11.
This paper shows that lead-cooled and sodium-cooled fast reactors (LFRs and SFRs) can preferentially consume minor actinides without burning plutonium, both in homogeneous and in heterogeneous mode. The former approach consists of admixing about 5% of minor actinides (MAs) into uranium–plutonium fuels in the core and using a limited number of thermalising pins consisting of UZrH1.6. These are needed to keep the negative Doppler feedback larger than the positive coolant reactivity coefficient. Our Monte Carlo burn-up calculations showed that a 600 MWe LFR self-breeder without blankets can burn an average of around 67 kg annually of MAs with a reactivity swing of only about −0.7$ per year. The reactivity swing of a corresponding 600 MWe SFR is more than three times larger due to the poorer breeding and half the critical mass in comparison to the LFR. However, when axial and radial blankets loaded with 10% MAs are added, the SFR burns 25% more MAs (131 kg/yr) and breeds 30% more Pu (150 kg/yr) than an equally sized LFR. When only the blankets are loaded with MAs, the SFR breeds 30% more Pu (198 kg/yr) and still burns about 60 kg a year of MAs. However, in terms of severe accident behaviour, the LFR, with its superior natural coolant circulation and larger heat capacity, has definite advantages.  相似文献   

12.
A new computational method is presented for a transient, thermal-hydraulic, multichannel analysis. The method is developed based on the concept of artificial compressibility to preserve the elliptic character of the reactor core flow in order to satisfy the realistic pressure boundary conditions, and to account for the discontinuities of the emprical correlations simulating the flow resistances. The computer code (RETSAC) developed by implementing the method presented in this paper can be categorized as a fourth generation multichannel computer code. This new computer code has been compared with the widely used marching techniques, such as COBRA IIIC (the third generation). The numerical results clearly indicate the situations in which the marching technique may or may not be appropriate. Furthermore, the RETSAC computer code can calculate various normal or off-normal reactor core flows which the third generation codes could not handle without a substantial increase of computer time.  相似文献   

13.
Programs to develop the “elevated temperature structural design guide for the demonstration fast breeder reactor” (DDS) in Japan have been conducted since 1987. The DDS is to be developed on the basis of the “elevated temperature structural design guide for class 1 components of prototype fast breeder reactors” (ETSDG), by considering structural and material features of the demonstration fast breeder reactor (DFBR) and incorporating results of the latest R&D. This paper describes the progress of the R& D concept of the DDS, and discusses some typical results of current studies on the DDS.  相似文献   

14.
Feasibility of transmutation of the major long-lived FPs (I, Pd, Tc, Sn, Se, Zr, Cs) while maintaining fuel breeding capability for the Self-Consistent Nuclear Energy System is evaluated based on the actinide recycle metal fuel core of a fast reactor. It is shown that I, Pd, Tc, Sn, Se, and Zr can be transmuted simultaneously by an aid of the isotope separation of Pd-107, Zr-93, Sn-126 and Se-79. Cs, which is difficult to transmute with the other FPs, is planned to be utilized as an in-reactor shielding material to confine in the system The overall assessment based on those results indicates that the developed system has the great potential toward the Self-Consistent Nuclear Energy System.  相似文献   

15.
Light water reactor (LWR) technology is nowadays the most successful commercial application of fission reactors for the production of electricity. However, in the next few years, nuclear industry will have to face new and demanding challenges: the need for sustainable and cheap sources of energy, the need for public acceptance, the need for even higher safety standards, the need to minimize the waste production are only a few examples. It is for these very reasons that a few next generation nuclear reactor concepts were selected for extensive research and development; super critical water reactors are among them. The use of a supercritical coolant would allow for higher thermal efficiencies and a more compact plant design, since steam generators, or steam separators and driers would not be needed, hence achieving a better economy. Moreover, because of the high heat capacity of supercritical water, relatively less coolant would be needed to refrigerate the reactor, therefore the feasibility to design a water cooled fast reactor: the supercritical water fast reactor (SCFR). This system presents unique features combining well-known fast and light water reactor characteristics in one design (e.g. a tendency to a positive void reactivity coefficient together with loss of coolant accident – LOCAs as a design basis accident). The core is in fact loaded with highly enriched MOX fuel (average plutonium content of 23%), and presents a peculiar and significant geometrical and material heterogeneity (use of radial and axial blankets, solid moderator layers, 12 different enrichment zones). The safety analysis of this very complex core layout, together with the optimization of the void reactivity effect through core design, is the main objective of this work.  相似文献   

16.
The interim guidelines for the application of inelastic analysis to design of fast reactor components were developed. These guidelines are referred from “Elevated Temperature Structural Design Guide for Commercialized Fast Reactor (FDS)”. The basic policies of the guidelines are more rational predictions compared with elastic analysis approach and a guarantee of conservative results for design conditions. The guidelines recommend two kinds of constitutive equations to estimate strains conservatively. They also provide the methods for modeling load histories and estimating fatigue and creep damage based on the results of inelastic analysis. The guidelines were applied to typical design examples and their results were summarized as exemplars to support users.  相似文献   

17.
钠冷快堆单个燃料组件冷却剂沸腾的数值模拟   总被引:1,自引:0,他引:1  
在正常功率下快堆单个燃料组件的瞬间完全堵流可能会产生相当严重的后果 ,对其后续事故序列及其潜在的破坏能力进行预测是必要的。对模拟这种现象的SCARABEEBE +1实验在包壳流动之前的阶段进行了数值模拟。程序中采用了两流体、六方程模型来描述沸腾及两相流动 ,应用子通道方法来对基本方程进行离散化 ,以半隐数值方法进行了求解。计算结果与实验观测相吻合 ,这表明该程序可以比较准确地预测单个燃料组件在瞬间完全堵流之后 ,包壳流动之前的行为。  相似文献   

18.
The possibility of an in-pile experimental reactor for fast breeder reactors using a fast driver core is investigated. The driver core is composed of a particle bed with diluted fuel. The results of various basic analyses show that this reactor could perform as follows: (1) power peaking at the outer boundary of test core does not take place for large test core; (2) the radial power distribution in test fuel pin is expected to be the same as a real reactor; (3) the experiments with short half width pulse is possible; (4) for the ordinary MOX core, enough heating-up is possible for core damage experiments; (5) the positive reactivity effects after power burst can be seen directly. These are difficult for conventional thermal in-pile experimental reactors in large power excursion experiments. They are very attractive advantages in the in-pile experiments for fast breeder reactors.  相似文献   

19.
The Battery Omnibus Reactor Integral System (BORIS) is being developed as a multipurpose integral fast reactor at the Seoul National University. This paper focuses on developing design methodology for optimizing geometry of the liquid metal cooled reactor vessel assembly. The key design parameters and constraints are chosen considering technical specifications such as thermal limits and manufacturing difficulties. The evolution strategy is adopted in optimizing the geometry. Two objective functions are selected based upon economic and thermohydraulic reasons. Optimization is carried out in the following steps. First, selected design values are supplied to the momentum integral model code to evaluate steady-state mass flow rate and coolant temperature distribution of the reactor vessel assembly utilizing the thermodynamic boundary condition on heat exchanger calculated by the thermodynamics code. Second, the objective function values are calculated and compared against the previous results. The steps are repeated until an optimum value is obtained. Results of the improved design of the reactor vessel assembly are presented and their characteristics are discussed.  相似文献   

20.
For realization of economical and reliable fast reactor (FR) plants, the Japan Atomic Energy Agency (JAEA) and the Japan Atomic Power Company (JAPC) are cooperating on the “Feasibility Study on Commercialized FR Cycle Systems”. To certify the design concepts through evaluation of the structural integrity of FR plants, the research and development of the “Elevated Temperature Structural Design Guide for Commercialized Fast Reactor (FDS)” is recognized as an essential theme. The FDS focuses on particular failure modes of FRs such as ratchet deformation and creep-fatigue damage due to cyclic thermal loads. For precise evaluation of these modes, the research and development for three main issues is in progress. First, the “Refinement of Failure Criteria” needs to be addressed for particular failure modes of FRs. Secondly, the development of “Guidelines for Inelastic Design Analysis” is conducted to predict elastic plastic and creep deformation under elevated temperature conditions. Lastly, efforts are being made toward preparing “Guidelines for Thermal Load Modeling” for the design of FR components where thermal loads are dominant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号