首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 867 毫秒
1.
Acidosis, energy depletion, overstimulation by excitatory amino acids, and free radical-mediated reactions are the major current concepts for the explanation of damage and death resulting from asphyxia. Impaired phosphorylation by protein kinase C (PKC) represents another mechanism incriminated for cell death. We used an unsophisticated perinatal asphyxia model to study heart protein kinases PKC and cyclin dependent kinase (CDK). Tissue pH, ATP, the antioxidant enzymes superoxide dismutase, catalase, and glutathion peroxidase, lipid peroxidation products, carbonyls, and aromatic hydroxylation were also tested. Electron spin resonance was applied to demonstrate the possible presence of radical adducts. An ELISA method was used to determine cell death. PKC activity and mRNA decreased with the length of the asphyctic periods and were paralleled by CDK and pH, whereas cell death gradually increased. No evidence was found for the involvement of active oxygen species or a radical adduct, and no energy depletion was observed. We conclude that impaired protein phosphorylation and/or acidosis may play a role in the pathobiochemistry of death from perinatal asphyxia in the rat.  相似文献   

2.
The objective of this study was to determine the relative importance of the first six complementation groups of the nucleotide excision repair cross-complementing genes (ERCC1-ERCC6) and the first complementation group of the X-ray repair cross-complementing genes (XRCC1), in the repair of DNA damage induced by the in vitro active cyclophosphamide (CP) derivatives 4-hydroperoxycyclophosphamide (4HC) and phosphorodiamidic mustard (PM). We compared the sensitivity of the wild-type CHO cell line, AA8, with that of the CHO mutant cell lines UV4 and UV20 (ERCC1-), UV5 (ERCC2-), UV24 (ERCC3-), UV41 (ERCC4-), UV135 (ERCC5-), UV61 (ERCC6-), and EM9 (XRCC1-). Cell survival was determined using both growth inhibition and conventional clonogenic assays. The yield of DNA crosslinks in selected cell lines was determined using an ethidium bromide fluorescence assay. RESULTS: The rank ordering of sensitivity to both 4HC and PM, based on the combined survival data, was UV41/UV4/UV20 > > UV61/UV24/UV135/EM9 > or = UV5 approximately AA8. Thus mutations in the ERCC1 and ERCC4 genes impart a hypersensitivity to CP analogs. To confirm the importance of the ERCC1 gene for cellular resistance to 4HC and PM, UV20 cells were transfected with the human ERCC1 gene and subsequently exposed to 4HC and PM. The transfected cells displayed essentially wild-type resistance to both drugs. Furthermore, two interspecific hybrids derived from UV41, both of which retained the region of human chromosome 16 that harbors the ERCC4 gene, displayed essentially wild-type resistance to 4HC and PM, confirming the importance of ERCC4 for the repair of 4HC-induced DNA damage. When crosslinks were assayed after a 60-min treatment with 4HC or a 15-min treatment with PM, their yield paralleled the sensitivity of the cell lines to both drugs: UV41 cells showed markedly elevated levels of crosslinks, whereas AA8 and UV5 cells showed similar (low) levels of crosslinks. CONCLUSIONS: Our findings confirm the general pattern indicating that the ERCC1 and ERCC4 gene products are crucial for the repair of 4HC-induced DNA damage, while the other nucleotide excision repair genes examined are relatively unimportant. These data suggest that the hypersensitivity of ERCC1- and ERCC4- mutants to DNA crosslinking agents may reflect a defect in recombinational repair rather than nucleotide excision repair.  相似文献   

3.
Xeroderma pigmentosum (XP) complementation group F was first reported in Japan and most XP-F patients reported to date are Japanese. The clinical features of XP-F patients are rather mild, including late onset of skin cancer. Recently a cDNA that corrects the repair deficiency of cultured XP-F cells was isolated. The XPF protein forms a tight complex with ERCC1 and this complex functions as a structure-specific endonuclease responsible for the 5' incision during DNA excision repair. Here we have identified XPF mRNA mutations and examined levels of the mRNA and protein expression in seven primary cell strains from Japanese XP-F patients. The XP-F cell strains were classified into three types in terms of the effect of the mutation on the predicted protein; (i) XPF proteins with amino acid substitutions; (ii) amino acid substituted and truncated XPF proteins; and (iii) truncated XPF protein only. A normal level of expression of XPF mRNA was observed in XP-F cells but XPF protein was extremely low. These results indicate that the detected mutations lead to unstable XPF protein, resulting in a decrease in formation of the ERCC1-XPF endonuclease complex. Slow excision repair of UV-induced DNA damage due to low residual endonuclease activity provides a plausible explanation for the typical mild phenotype of XP-F patients.  相似文献   

4.
DNA repair has been proposed to be an important determinant of cancer cell sensitivity to alkylating agents and cisplatin (DDP). Nucleotide excision repair (NER), which represents one of the most important cellular DNA repair processes able to remove a broad spectrum of DNA lesions, is involved in the recognition and repair of the crosslinks caused by DDP and melphalan (L-PAM). In this study, the mRNA levels of the different genes involved in NER (ERCC1, XPA, XPB, XPC, XPD, XPF) were examined in a panel of eight different human cancer cell lines, together with the overall DNA repair capacity using a host cell reactivation assay of a damaged plasmid. A statistically significant correlation was observed between the relative expression of XPA/XPC (P < 0.05) and ERCC1/XPC (P < 0.05) mRNAs. No correlation was found between the DDP and L-PAM IC50S and the relative mRNA expression of the tested NER genes. When the overall cellular DNA repair capacity was studied, carcinomas seemed to have a higher repair activity than leukaemias; but this repair DNA activity correlated neither with the mRNA expression of the different NER genes nor with DDP and L-PAM IC50S. These data seem to suggest that even if the NER pathway is an important determinant for the cytotoxicity of alkylating agents, as demonstrated by the extremely high sensitivity to alkylating agents in cells lacking this repair system, other factors have to play a role in regulating the cellular sensitivity/resistance to these antitumour drugs.  相似文献   

5.
ERCC1-XPF is a heterodimeric protein complexinvolved in nucleotide excision repair and recombinational processes. Like its homologous complex in Saccharomyces cerevisiae , Rad10-Rad1, it acts as a structure-specific DNA endonuclease, cleaving at duplex-single-stranded DNA junctions. In repair, ERCC1-XPF and Rad10-Rad1 make an incision on the the 5'-side of the lesion. No humans with a defect in the ERCC1 subunit of this protein complex have been identified and ERCC1-deficient mice suffer from severe developmental problems and signs of premature aging on top of a repair-deficient phenotype. Xeroderma pigmentosum group F patients carry mutations in the XPF subunit and generally show the clinical symptoms of mild DNA repair deficiency. All XP-F patients examined demonstrate reduced levels of XPF and ERCC1 protein, suggesting that proper complex formation is required for stability of the two proteins. To better understand the molecular and clinical consequences of mutations in the ERCC1-XPF complex, we decided to map the interaction domains between the two subunits. The XPF-binding domain comprises C-terminal residues 224-297 of ERCC1. Intriguingly, this domain resides outside the region of homology with its yeast Rad10 counterpart. The ERCC1-binding domain in XPF maps to C-terminal residues 814-905. ERCC1-XPF complex formation is established by a direct interaction between these two binding domains. A mutation from an XP-F patient that alters the ERCC1-binding domain in XPF indeed affects complex formation with ERCC1.  相似文献   

6.
The BRCT domain (for BRCA1 carboxyl terminus) is a protein motif of unknown function, comprising approximately 100 amino acids in five conserved blocks denoted A-E. BRCT domains are present in the tumour suppressor protein BRCA1 [1-3], and the domain is found in over 40 other proteins, defining a superfamily that includes DNA ligase III-alpha and the essential human DNA repair protein XRCC1. DNA ligase III-alpha and XRCC1 interact via their carboxyl termini, close to or within regions that contain a BRCT domain [4]. To examine whether the primary role of the carboxy-terminal BRCT domain of XRCC1 (denoted BRCT II) is to mediate the interaction with DNA ligase III-alpha, we identified the regions of the domain that are required and sufficient for the interaction. An XRCC1 protein in which the conserved D-block tryptophan was disrupted by point mutation retained the ability to interact with DNA ligase III-alpha, so this tryptophan must mediate a different, although conserved, role. XRCC1 in which the weakly conserved C-block was mutated lost the ability to interact with DNA ligase III-alpha. Moreover, 20 amino acids spanning the C-block of BRCT II conferred full DNA ligase III-alpha binding activity upon an unrelated polypeptide. An XRCC1 protein in which this 20mer was deleted could not maintain normal levels of DNA ligase III-alpha in transfected rodent cells, a phenotype associated with defective repair [5]. In summary, these data demonstrate that a BRCT domain can mediate a biologically important protein-protein interaction, and support the existence of additional roles.  相似文献   

7.
In human cells DNA damage caused by UV light is mainly repaired by the nucleotide excision repair pathway. This mechanism involves dual incisions on both sides of the damage catalyzed by two nucleases. In mammalian cells XPG cleaves 3' of the DNA lesion while the ERCC1-XPF complex makes the 5' incision. The amino acid sequence of the human excision repair protein ERCC1 is homologous with the fission yeast Swi10 protein. In order to test whether these proteins are functional homologues, we overexpressed the human gene in a Schizosaccharomyces pombe swi10 mutant. A swi10 mutation has a pleiotropic effect: it reduces the frequency of mating type switching (a mitotic transposition event from a silent cassette into the expression site) and causes increased UV sensitivity. We found that the full-length ERCC1 gene only complements the transposition defect of the fission yeast mutant, while a C-terminal truncated ERCC1 protein also restores the DNA repair capacity of the yeast cells. Using the two-hybrid system of Saccharomyces cerevisiae we show that only the truncated human ERCC1 protein is able to interact with the S . pombe Rad16 protein, which is the fission yeast homologue of human XPF. This is the first example yet known that a human gene can correct a yeast mutation in nucleotide excision repair.  相似文献   

8.
Photochemical thrombotic ischemia model was used to study the possible roles of excision repair cross-complementing group 6 (ERCC6), a DNA repair gene, in the neuroprotection of dextromethorphan (DM), a NMDA antagonist, in ischemic brain injury. The results showed that no obvious ERCC6 mRNA expression was found in the perifocal area of irradiated cerebral cortex before 24 h postischemia. Then, the number of ERCC6 mRNA positive cells gradually enhanced, and attained a peak value at 72 h after light irradiation, which followed a declined tendency at 7-day postlesion. These results suggest that DNA repair gene ERCC6 mRNA expression in the perifocal area may be involved in the pathophysiological processes following the photochemical thrombotic cerebral ischemia. By the administration of DM, we observed that it can significantly upregulate the expression of ERCC6 mRNA in the perifocal area at 48 h after ischemic event. The neuroprotective mechanisms of DM may be related to the upregulation of DNA repair gene ERCC6 mRNA.  相似文献   

9.
10.
The XPF and ERCC1 proteins form a tight complex and function as an endonuclease to incise on the 5'-side of pyrimidine dimers in DNA. Levels of both proteins are extremely low in group F xeroderma pigmentosum (XP-F) cells. We transfected XP-F cells with the plasmids expressing XPF or ERCC1 and examined levels of both proteins in the cells. Although XP-F cells are sensitive to UV and mitomycin C (MMC), cells overexpressing XPF expressed ERCC1 as well and resistance to UV and MMC was restored to the normal level. In contrast, cells overexpressing ERCC1 did not express XPF and were still sensitive to UV and MMC. These results indicate that both the XPF and ERCC1 proteins are required to repair UV- and MMC-induced DNA damage. Even though a high level of ERCC1, which has been presumed to be a catalytic subunit of the endonuclease, is stably present in XP-F cells, ERCC1 protein alone cannot carry out excision repair completely.  相似文献   

11.
In a panel of 16 human ovarian tumours transplanted in nude mice, the expression of genes involved in cell cycle regulation and in response to drug treatment were characterised. In the 16 tumours analysed we could not detect overexpression of Erb-B2 oncogene while expression of MDR1 mRNA was not detected in 11/15 samples and was low in 4/15 tumours. Only three tumours had mutations in the p53 gene exons 5-8 and one of these mutations did not result in any amino acid alteration. The levels of mRNA for cyclins A, D1 and E were heterogeneous with some tumours expressing high levels and others not expressing them at all. The same was found for the cyclin dependent kinases (CDK) CDK2 and CDK4 and for CDK inhibitors p21/WAF1, p27/KIP1 and p16/CDKN2. Two genes belonging to the nucleotide excision repair, ERCC1 and ERCC3 were detectable in all the samples examined, as were the genes MGMT and MAG, also involved in DNA repair. The data indicate a heterogeneity in the expression of genes considered to be involved in the cellular responses to cytotoxic drug treatment and indicate the possibility of using these tumour models to test specifically molecules with a defined mechanism of action.  相似文献   

12.
13.
14.
V(D)J recombination consists of a DNA cleavage reaction catalysed by RAG1 and RAG2, followed by an end-joining reaction that utilizes the cell's double-strand break repair machinery. Genes essential for the end-joining reaction include: XRCC4 encoding a protein of unknown enzymatic function; XRCC5 and XRCC6 encoding 86 and 70 kDa subunits of the Ku autoantigen, a DNA end-binding protein that is also the regulatory subunit of DNA-dependent protein kinase (DNA-PK); and XRCC7 encoding the catalytic subunit (DNA-PKcs) of DNA-PK. Recent progress in understanding the cleavage reaction, coupled with what was previously known about Ku, DNA-PK, and double-strand break repair, provide the foundation for a working model of how V(D)J recombination might be catalysed.  相似文献   

15.
Striatal and cortical neurons containing nitric oxide synthase (NOS) were studied in adult rats subjected to different periods of perinatal asphyxia (PA) using immunohistochemistry at both light microscopy (LM) and electron microscopy (EM). Another group was subjected to PA + hypothermia to study its neuroprotective effect. Quantitative image analysis was performed on the striatum and neocortex in order to count the number of immunoreactive neurons and to compare the pattern of staining between the different groups. Six-month-old rats that suffered subsevere and severe PA demonstrated, at LM, cytomegaly of the striatal and neocortical neurons containing NOS. Control and hypothermic neurons were more weakly immunostained than PA neurons. Subsevere and severe asphyctic rats showed an important neuronal loss that was reduced by hypothermic treatment. The PA group disclosed, at EM, dense electronic bodies distributed in terminals surrounding synaptic vesicles and in dendrites. Non-NOS-containing neurons showed signs of degeneration, such as dark cytoplasm and shrunken nuclei. Surrounding the blood vessels, we observed a clear edema. The immunolabeling in hypothermic rats resembled that observed in controls. These data suggest that subsevere and severe PA induces chronic changes in the neuronal content of NOS in the striatum and neocortex. Degeneration observed in neurons surrounding cytomegalic NOS-containing cells may be due to the excess of NO in their environment. Moreover, the chronic alterations produced by PA seem to be prevented by hypothermia.  相似文献   

16.
17.
Saccharomyces cerevisiae DNA ligase IV (LIG4) has been shown previously to be involved in non-homologous DNA end joining and meiosis. The homologous mammalian DNA ligase IV interacts with XRCC4, a protein implicated in V(D)J recombination and double-strand break repair. Here, we report the discovery of LIF1, a S.cerevisiae protein that strongly interacts with the C-terminal BRCT domain of yeast LIG4. LIG4 and LIF1 apparently occur as a heterodimer in vivo. LIF1 shares limited sequence homology with mammalian XRCC4. Disruption of the LIF1 gene abolishes the capacity of cells to recircularize transformed linearized plasmids correctly by non-homologous DNA end joining. Loss of LIF1 is also associated with conditional hypersensitivity of cells to ionizing irradiation and with reduced sporulation efficiency. Thus, with respect to their phenotype, lif1 strains are similar to the previously described lig4 mutants. One function of LIF1 is the stabilization of the LIG4 enzyme. The finding of a XRCC4 homologue in S.cerevisiae now allows for mutational analyses of structure-function relationships in XRCC4-like proteins to define their role in DNA double-strand break repair.  相似文献   

18.
Germline mutations in the breast cancer susceptibility genes BRCA1 and BRCA2 have been linked to the development of breast cancer, ovarian cancer, and other malignancies. Recent studies suggest that the BRCA1 and BRCA2 gene products may function in the sensing and/or repair of DNA damage. To investigate this possibility, we determined the effects of various DNA-damaging agents and other cytotoxic agents on the mRNA levels of BRCA1 and BRCA2 in the MCF-7 and other human breast cancer cell lines. We found that several agents, including adriamycin (a DNA intercalator and inhibitor of topoisomerase II), camptothecin (a topoisomerase I inhibitor), and ultraviolet radiation induced significant decreases in BRCA1 and BRCA2 mRNA levels. Decreased levels of BRCA1 and BRCA2 mRNAs were observed within 6-12 h after treatment with adriamycin and persisted for at least 72 h. Adriamycin also induced decreases in BRCA1 protein levels; but these decreases required several days. U.V. radiation induced dose-dependent down-regulation of BRCA1 and BRCA2 mRNAs, with significant decreases in both mRNAs at doses as low as 2.5 J/m2, a dose that yielded very little cytotoxicity. Adriamycin-induced down-regulation of BRCA1 and BRCA2 mRNAs was first observed at doses that yielded relatively little cytotoxicity and little or no apoptotic DNA fragmentation. Adriamycin and U.V. radiation induced distinct dose- and time-dependent alterations in the cell cycle distribution; but these alterations did not correlate well with corresponding changes in BRCA1 and BRCA2 mRNA levels. However, the adriamycin-induced reduction in BRCA1 and BRCA2 mRNA levels was correlated with p53 functional status. MCF-7 cells transfected with a dominant negative mutant p53 (143 val-->ala) required at least tenfold higher doses of adriamycin to down-regulate BRCA1 and BRCA2 mRNAs than did parental MCF-7 cells or control-transfected MCF-7 clones. These results suggest that BRCA1 and BRCA2 may play roles in the cellular response to DNA-damaging agents and that there may be a p53-sensitive component to the regulation of BRCA1 and BRCA2 mRNA expression.  相似文献   

19.
The covalent rejoining of DNA ends at single-stranded or double-stranded DNA breaks is catalyzed by DNA ligases. Four DNA ligase activities (I-IV) have been identified in mammalian cells [1]. It has recently been demonstrated that DNA ligase IV interacts with and is catalytically stimulated by the XRCC4 protein [2,3], which is essential for DNA double-strand break repair and the genomic rearrangement process of V(D)J recombination [4]. Together with the finding that the yeast DNA ligase IV homologue is essential for nonhomologous DNA end joining [5-7], this has led to the hypothesis that mammalian DNA ligase IV catalyzes ligation steps in both of these processes [8]. DNA ligase IV is characterized by a unique carboxy-terminal tail comprising two BRCT (BRCA1 carboxyl terminus) domains. BRCT domains were initially identified in the breast cancer susceptibility protein BRCA1 [9], but are also found in other DNA repair proteins [10]. It has been suggested that DNA ligase IV associates with XRCC4 via its tandem BRCT domains and that this may be a general model for protein-protein interactions between DNA repair proteins [3]. We have performed a detailed deletional analysis of DNA ligase IV to define its XRCC4-binding domain and to characterize regions essential for its catalytic activity. We find that a region in the carboxy-terminal tail of DNA ligase IV located between rather than within BRCT domains is necessary and sufficient to confer binding to XRCC4. The catalytic activity of DNA ligase IV is affected by mutations within the first two-thirds of the protein including a 67 amino-acid amino-terminal region that was previously thought not to be present in human DNA ligase IV [11].  相似文献   

20.
XRCC4 is a generally expressed protein of 334 amino acids that is involved in the repair of DNA double-strand breaks and in V(D)J recombination, but its function is unknown. In this study, we have used a mutational approach and the yeast two-hybrid method to perform an initial characterization of this protein. We show that the XRCC4 protein is located in the nucleus. We also demonstrate that several potential phosphorylation sites are not required for XRCC4 function in a transient V(D)J recombination assay. In addition, we show that XRCC4 forms a homodimer in vivo with the homodimerization domain being located within amino acids 115-204. Finally, we define a core domain of XRCC4 that functions in V(D)J recombination and comprises amino acids 18-204. Potential functions of XRCC4 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号