首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This research investigates the cyclic flexural behavior of double-angle concentrically braced frame beam-column connections using three-dimensional nonlinear finite element analysis. Prior experimental research demonstrated that such connections possess appreciable flexural stiffness, strength, and ductility. The reserve capacity provided by these connections plays a significant role in the seismic behavior of low-ductility concentrically braced frames, so knowledge about the impact of connection parameters on local limit states and global connection performance is needed for employing reserve capacity to design and assess concentrically braced frames. Finite element models were developed and validated against prior experiments with focus on the limit states of failure of the fillet weld between the gusset plate and beam, low-cycle fatigue fracture of the steel angles joining the beam and gusset plate to the column, and bolt fracture. The models were used to evaluate the flexural stiffness, strength, and ductility of braced frame connections with primary attention on the effects of beam depth, angle thickness, and a supplemental seat angle. The finite element analysis demonstrated that increasing beam depth and angle thickness and adding a supplemental seat angle all increased the stiffness and strength of the connection while maintaining deformation capacity. A procedure to estimate the flexural behavior of beam-column connections with gusset plates was developed based on the results of the numerical simulations.  相似文献   

2.
In this study, the suitability of a new structural system called the knee braced frames (KBFs) is investigated for seismic resistant steel structures. In these structural systems, ends of beams are connected to columns by hinges (simple connection) instead of rigid connections, and ends of knee braced elements are connected to columns and beams by hinges as well. In the present paper, in addition to a comparison between elastic behaviour and elastic fundamental natural period, the ductility reduction factor and the type of collapse mechanism in steel KBFs and steel moment resisting frames (MRFs) are compared. The study revealed that the stiffness of steel buildings can be increased considerably by applying knee braced elements and the effects of knee braced elements are highly dependent on knee braced configuration. By applying the pushover analysis, it was observed that the type of collapse mechanism of KBFs is very similar to the mechanism of MRFs. Furthermore in most cases, the ductility reduction factor, Rμ, obtained from steel KBFs is greater than the ductility reduction factor obtained for steel MRFs. Based on the similarity between type of collapse mechanism and the proximity of ductility reduction coefficients of the KBFs and MRFs systems, it can be concluded that the new steel knee braced frame systems can be categorised as steel MRFs with rigid connections.  相似文献   

3.
Earthquake hazards effect significant damage to structures and cause widespread failure throughout buildings. Moment resisting frames are widely used as lateral resisting systems when sufficient ductility is to be met. Generally three types of moment resisting frames are designed in practice namely Special, Intermediate and Ordinary Moment Frames, each of which has certain level of ductility. Comparative studies on the seismic performance of these three different types of structure are performed in this study. Analytical models of connections are employed including panel zone and beam to column joint model. Incremental dynamic analysis is then utilized to assess the structural dynamic behavior of the frames and to generate required data for performance based evaluations. Maximum annual probability of exceeding different limit states may reveal the superiority of a ductile structure in which a greater behavior factor is employed. Special moment resisting frames are expected to perform better once a certain level of ductility is to be met but the amount of superiority may be the subject of investigation especially from a performance based design standpoint.  相似文献   

4.
针对胶合木框架侧向位移不易满足抗震要求这一问题,研究了增设人字形胶合木支撑和铝合金屈曲约束支撑的带支撑胶合木框架的抗震性能。对纯胶合木梁柱框架和3个增设支撑胶合木框架进行了低周反复加载试验,分析了4个胶合木框架试件的水平承载力、耗能能力、刚度退化、转角变形和木支撑应变。结果表明:增设人字形木支撑和铝合金屈曲约束支撑均可以显著提高胶合木框架的承载力、耗能能力和刚度;支撑端部连接形式对胶合木框架的抗震性能有一定影响;增设支撑的3个胶合木框架试件均在支撑或支撑连接处发生破坏,胶合木框架主体并未发生明显损伤,两类支撑均很好地起到了第一道抗震防线的作用,保证了主体框架的安全。胶合木框架数值模拟和木支撑截面尺寸参数分析结果表明,经柱截面尺寸修正后的有限元模型针对框架抗侧刚度和承载力具有较好的预测精度。  相似文献   

5.
Performance‐based design method, particularly direct displacement‐based design (DDBD) method, has been widely used for seismic design of structures. Estimation of equivalent viscous damping factor used to characterize the substitute structure for different structural systems is a dominant parameter in this design methodology. In this paper, results of experimental and numerical investigations performed for estimating the equivalent viscous damping in DDBD procedure of two lateral resistance systems, moment frames and braced moment frames, are presented. For these investigations, cyclic loading tests are conducted on scaled moment resisting frames with and without bracing. The experimental results are also used to calibrate full‐scale numerical models. A numerical investigation is then conducted on a set of analytical moment resisting frames with and without bracing. The equivalent viscous damping and ductility of each analytical model are calculated from hysteretic responses. On the basis of analytical results, new equations are proposed for equivalent viscous damping as a function of ductility for reinforced concrete and steel braced reinforced concrete frames. As a result, the new equation is used in direct displacement‐based design of a steel braced reinforced concrete frame. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In order to investigate the seismic behavior of connections composed of concrete-filled square steel tubular columns and steel-concrete composite beams, fourteen cruciform connection specimens were tested. The strength, deformation, and energy dissipation capacity of these composite connections were analyzed. The test results showed that the strength of connections with interior diaphragms is adequate, but their ductility is low. Also, the deformation capacity of connections with anchored studs is good, but their strength is low. In comparison, the connections with exterior diaphragms have adequate strength, good ductility, and high-energy dissipation capacity, and as a result, it can be concluded that they are more suitable for applications in moment resisting frames in seismic regions.  相似文献   

7.
高韧性钢骨梁柱接头   总被引:2,自引:0,他引:2  
钢骨结构一向被认为具有良好的耐震韧性.因此广为使用于世界各地的建筑结构中,高层建筑更是大量采用钢骨结构。但美国北岭(Northridge)地震首次曝露钢骨建筑结构梁柱接头大量破坏之现象,引起各界震惊,甚至造成社会恐慌。日本阪神地震亦发现大量钢骨梁柱接头脆性断裂。由实际发生之地震显示,梁柱接头无论是采用工地焊接或是于工厂内焊接均无法保证其梁端之塑性转角能达到结构抗震之需求,且美式之腹板栓接-翼板焊接之梁柱接头,或日式之工厂焊接-工地栓接之托梁式设计皆已不符现行设计法规之规定。本文除介绍钢骨梁柱接头断裂之原因外.并说明高韧性钢骨梁柱接头的设计原理,此种高韧性接头不仅设计简单施工容易且造价低廉,而其塑性转角更可达4%以上,有助于确保钢骨结构的耐震韧性。  相似文献   

8.
为实现钢管混凝土框架完全装配式施工,提出了装配式复式钢管混凝土柱 钢梁框架结构,该结构包含复式钢管混凝土装配式柱 柱拼接节点和装配式加强块梁柱节点。为研究这些连接形式对复式钢管混凝土框架抗震性能的影响,完成了3榀1∶2缩尺框架模型(包括1榀节点栓焊连接框架、1榀装配式节点框架和1榀柱与节点全装配式框架)的拟静力试验,得到各试件的破坏模式、滞回性能、延性、刚度与承载力退化。3个模型均表现出良好的承载能力和延性,试验模型的最大层间位移角超过4%,位移延性系数大多超过4。结果表明:传统连接复式钢管混凝土框架和采用装配式方案后的框架均具备良好的抗震性能;所提的柱 柱拼接节点性能可靠,对框架的承载力、刚度和延性的影响很小;所提的加强块梁柱节点可有效改善框架的延性,并略提高框架的承载力。  相似文献   

9.
Buckling‐restrained braced frame (BRB) is one of the newest seismic force‐resisting systems used in buildings. However, one of the requirements for designing a structure is to provide a ductility behavior of structures to dissipate earthquake energy and to avoid residual drifts. These days, self‐centering seismic lateral force‐resisting systems have drawn attention due to their potentials to solve the above mentioned issues. On the other hand, shape memory alloys (SMAs) are characterized by unique superelastic behavior, which enables the material to recover its original shape after experiencing large deformations. The goal of this study is to assess BRBs whose ductility are improved by utilizing SMA. Nonlinear time history and incremental dynamic analysis techniques are applied to investigate the behavior of the two frames with different stories (four and eight stories) under different ground motion records. The results showed that utilizing BRB made of hybrid steel and SMA resulted in increasing ductility of the structure and decreasing residual displacements of the structures.  相似文献   

10.
Lu  JinYu  Qiao  XuDong  Liao  Jie  Tang  Yi 《钢结构国际杂志》2016,16(4):1373-1380

Numerous experimental and finite element studies have shown that steel plate shear walls with slits have several beneficial characteristics, such as good ductility and excellent energy dissipation capacity, which make them a feasible lateral load resisting and energy dissipation system for high-rise buildings in high seismic regions. The width of the flexural links between slits has a significant effect on the mechanical behavior and hysteretic performance of steel plate shear walls with slits. This paper presented two kinds of steel plate shear walls with non-uniform spacing slits (SPWNS) and investigated their performance under low-cycle loading based on tests and finite element software. The study mainly focused on the ultimate bearing capacity, the lateral stiffness, the energy dissipation capacity and the ductility of SPWNS. The results from numerical analysis and test study were compared with each other. The ultimate bearing capacity and the lateral stiffness of traditional steel plate shear walls with uniform spacing slits (SPWUS) were similar to that of SPWNS. In contrast, the ductility and the energy dissipation capacity of SPWUS were much higher.

  相似文献   

11.
Concentrically braced frames (CBFs) are widely used as lateral-load resisting system in steel structures. This study examines the effects of different parameters especially those associated with connections, on the behavior of CBFs. A single bay, singlestory frame is used to evaluate the interaction between structural members. Nonlinear analyses using a detailed inelastic finiteelement model (FEM) are carried out to study the behavior of frames subjected to cyclic loading. Models are designed based on seismic codes and analyzed to evaluate the performance of both SCBFs and OCBFs. The equivalent plastic strain concept is used to determine the ductility capacity and to predict fracture and failure in these models. Results show that the seismic performance of CBFs, which are designed according to current provisions can be improved by configuring the details of gusset plate connections in a way that inelastic demands are balanced in middle of brace and gusset plate corners.  相似文献   

12.
屈曲约束支撑可以有效地提高装配式钢管混凝土组合框架的抗侧移刚度和耗能减震作用。为研究地震作用下屈曲约束支撑装配式钢管混凝土组合框架的抗震性能和破坏机理,进行两层单跨屈曲约束支撑单边螺栓端板连接钢管混凝土组合框架的水平低周反复荷载试验。考察柱截面类型和端板形式对结构整体抗震性能的影响。记录和研究了此类混合结构的破坏形式和水平荷载-水平位移滞回曲线,分析和评价其骨架曲线、强度和刚度退化规律、延性和耗能等。试验研究表明,在柱截面含钢率相同条件下,抗侧移体系采用屈曲约束支撑,梁柱连接采用单边螺栓端板连接方式,屈曲约束支撑方钢管混凝土组合框架的水平承载力和初始抗侧刚度大于屈曲约束支撑圆钢管混凝土组合框架,但是其延性和耗能能力反之。试验和分析结果表明:屈曲约束支撑装配式钢管混凝土组合框架结构具有良好的抗震性能,较大的可变形能力和耗能能力,可以在多高层建筑结构中应用和推广。  相似文献   

13.
钢结构中心支撑框架的抗震承载力设计   总被引:3,自引:0,他引:3  
陈炯  姚忠  路志浩 《钢结构》2008,23(9):59-65
钢结构中心支撑框架是多层工业和民用建筑中广泛应用的抗侧力结构体系之一,其在地震动激励下的抗震问题十分复杂。为此讨论钢结构中心支撑框架的抗震承载力设计。首先,讨论我国抗震规范的中心支撑抗震承载力验算公式,指出其不可靠,过高估计了支撑屈曲后承载力。在与相关国外规范和试验数据比较的基础上,提出了更可靠、合理且简捷的支撑承载力验算公式。继而,讨论了支撑计算长度以及V和A形支撑横梁设计需特别注意的问题。最后,就中心支撑框架抗震承载力设计的问题进行讨论,指出,支撑设计应考虑支撑对支撑系统中钢柱轴力的影响和在地震作用组合下支撑屈曲与否的影响,并提出了建议设计方法,可供规范修订时参考。  相似文献   

14.
In this paper, the seismic behavior of dual structural systems in forms of steel moment‐resisting frames accompanied with reinforced concrete shear walls and steel moment‐resisting frames accompanied with concentrically braced frames, have been studied. The nonlinear behavior of the mentioned structural systems has been evaluated as, in earthquakes, structures usually enter into an inelastic behavior stage and, hence, the applied energy to the structures will be dissipated. As a result, some parameters such as ductility factor of structure (μ), over‐strength factor (Rs) and response modification factor (R) for the mentioned structures have been under assessment. To achieve these objectives, 30‐story buildings containing such structural systems were used to perform the pushover analyses having different load patterns. Analytical results show that the steel moment‐resisting frames accompanied with reinforced concrete shear walls system has higher ductility and response modification factor than the other one, and so, it is observed to achieve suitable seismic performance; using the first system can have more advantages than the second one. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Steel braced frames are a commonly used seismic resisting system and thus, multi-story X-braced frames are frequently used. However, research into the behavior of these systems with midspan gusset plates, as used in practice, is limited. As a result, their seismic performance and the influence of connection design on this performance are not well understood. A comprehensive series of inelastic analyses were undertaken to better understand the nonlinear, cyclic behavior of multi-story X-braced frames and their gusset plate connections. Finite element (FE) analyses were conducted and the FE model was developed and verified by comparing the simulated results with cyclic tests and nonlinear analyses of single story systems, conducted at the University of Washington. The verified analytical model and associated failure estimation procedures were used to predict all yield mechanisms and failure modes, frame deformation capacity, and initial cracking and fracture of critical elements within the frame. A parametric study was performed to examine the influence of the gusset plate, framing members and other structural elements on the seismic performance of multi-story X-braced frames. The results show that the design and detailing of the gusset plate has a significant impact on the seismic performance of the frame. Connections designed with proposed end-rotational clearance models, and with strength and stiffness values balanced to the buckling and tensile yield capacities of the brace provided the best ductility and deformation capacity. In addition, the results suggest that floor slabs, gusset plate stiffeners and framing member sizes affect the frame performance and must be considered in the analysis and design of the system.  相似文献   

16.
Zipper elements of stories transfer unbalanced vertical forces of the lower stories to the upper ones. The tensile forces generated in these elements extremely increase in upper stories. Accordingly, these zipper elements need an impractically large cross-section to be designed. This problem induces some limitations on the use of zipper bracing systems, especially in high-rise buildings. Therefore in this study a novel approach is presented to resolve this problem. The proposed solution is using cables with appropriate pre-stress ratios as zipper elements. Accordingly, the seismic behavior of cable zipper-braced frames with different pre-stress ratios is investigated. For this purpose, nonlinear time history (NLTH) analyses were conducted on several structural models with different numbers of stories. Comparison of the obtained results with those of conventional suspended zipper-braced frames (SZBF) demonstrates the efficiency and viability of the new technique. Moreover it is shown that use of the suggested system with appropriately pre-stressed cables enhances the seismic performance of zipper-braced systems.  相似文献   

17.
Despite good rigidity, braced frames have weak nonlinear behavior and inadequate distribution of ductility in stories, which cause significant structural damage. In this research, a seismic resistant system called coupled concentrically braced frame (CCBF) is developed to enhance the performance of braced frames by coupling them with a beam. In this case, the coupling beams are the primary source for ductility of the system, and after their yielding in more severe earthquakes, the structure continues to benefit from the ductility of the braces as the secondary source; therefore, the system has two-level behavior caused by different probable seismic excitations. In this case, in addition to maintaining the stiffness of the two concentrically braced frames, the coupling beams resist against the movement of the braced frames, and as a result, the stiffness of the system is increased. Therefore, lighter elements can be used to resist lateral loads. Linear and nonlinear analyses of CCBF, and its comparison with other braced frames, indicate that participation of the coupling beams provides an adequate stiffness and ductility. These frames have more stable nonlinear behavior than conventional ones and continue their nonlinear behavior even after fracture of coupling beams in severe earthquakes.  相似文献   

18.
Buckling-restrained braced frame (BRBF) systems are used extensively for resisting lateral forces in high seismic regions of the United States. Numerical and large-scale experimental studies of BRBFs have shown predictable seismic performance with robust ductility and energy dissipation capacity. However, the low post-yield stiffness of buckling-restrained braces (BRBs) may cause BRBFs to exhibit large maximum and residual drifts and allow the formation of soft stories. Thus, reserve strength provided by other elements in the lateral-force-resisting system is critical to improving seismic performance of BRBFs. This reserve strength can be provided in two primary ways: (1) moment-resisting connections within the BRBF and (2) a steel special moment-resisting frame (SMRF) in parallel with the BRBF to create a dual system configuration. These two approaches to providing reserve strength can be used together or separately, leading to a variety of potential system configurations. In addition, special attention must be given to the connections within the BRBF since moment-resisting connections have been observed experimentally to limit drift capacity due to undesirable connection-related failure modes. This paper presents nonlinear dynamic analysis results and evaluates performance of BRBF and BRBF-SMRF systems using moment-resisting and non-moment-resisting beam-column connections within the BRBF. Reserve strength is shown to play a critical role in seismic behavior and performance of BRBFs.  相似文献   

19.
Large-scale experimental studies of buckling-restrained braced frames (BRBFs) have shown that although they display good overall seismic performance, they may have limitations due to connection failure modes that do not allow the braces to realize their full ductility capacity. These experimental results motivate further investigation of BRBF connection behavior. In this study, nonlinear finite element models are used to study BRBF beam–column–brace connections. The models focus on a one-story subassembly extracted from a previously-tested, four-story BRBF. After the baseline finite element analysis results are verified with experimental data, parametric studies varying the connection configuration are used to assess the key factors influencing performance. Connection configuration is shown to have a significant impact on global system response and localized connection demands.  相似文献   

20.
Dissipative (INERD) connections for seismic resistant steel braced frames. Innovative dissipative (INERD) connections were developed for seismic resistant steel braced frames. The dissipative zones in such frames are the connections, while the other parts of the structure are protected against inelastic deformations and instability phenomena. The braces and the columns are connected with eye‐bars and a pin running through them, which is the dissipative element. Experimental and theoretical investigations were performed to study the monotonic and cyclic behavior of the connections. Simple rules were developed for the design of the connection and the adjacent elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号