首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wind energy potential in various parts of Turkey is becoming economical due to reductions in the wind turbine costs, and in fossil fuel atmospheric pollution. The global change program imposes restrictions for use of alternative renewable and environmentally friendly energy sources. Wind energy is among such energy potentials and its practical and economical use gain significance day by day. The first wind energy turbine site investigation and wind power application possibility have been presented for the Akhisar area within the eastern provinces of Turkey. Different wind turbine technologies are assessed according to the local wind speed variations. Locally and technologically suitable wind turbines are selected. Finally their locations are decided by expert views and field measurements with the usage of well known WASP software. It is calculated that a minimum of 31436 MWh/year wind can be generated in this site. In the calculations 10% error possibility is allowed.  相似文献   

2.
China's energy shortages are a major problem for its industrial and agricultural modernization programme. Coal-fired power stations are rapidly being built to help the problem in the short-term, but in the long-term China intends to make use of its vast resources of hydropower. The authors present a summary of the state-of-the-art of hydropower in China.  相似文献   

3.
Thirteen years of wind data from Bozcaada Meteo-station have been used to evaluate the potential of wind power on Bozcaada Island, in the North-eastern part of the Aegean Sea. Investigations show that Bozcaada has a considerable wind potential (average wind speed M = 6.4 ms−1 and a mean energy density E = 324 W/m−2 at the location of the meteo-station, at 10 m above ground level which could cover its yearly electricity demand by utilizing only one 250 kW wind turbine. The wind atlas analysis and application program, WAsP, has been used to evaluate the wind atlas statistics and energy densities of Bozcaada. The yearly power production of the 250 kW wind turbine, assumed to be installed has been calculated. Then an environmental and techno-economic analysis of wind power has been carried out.  相似文献   

4.
《Applied Energy》2005,80(1):35-45
Most of the locations in Turkey receive abundant solar-energy, because Turkey lies in a sunny belt between 36° and 42°N latitudes. Average annual temperature is 18 to 20 °C on the south coast, falls to 14–16 °C on the west coat, and fluctuates between 4 and 18 °C in the central parts. The yearly average solar-radiation is 3.6 kW h/m2 day, and the total yearly radiation period is ∼2610 h. In this study, a new formulation based on meteorological and geographical data was developed to determine the solar-energy potential in Turkey using artificial neural-networks (ANNs). Scaled conjugate gradient (SCG), Pola-Ribiere conjugate gradient (CGP), and Levenberg–Marquardt (LM) learning algorithms and logistic sigmoid (logsig) transfer function were used in the networks. Meteorological data for last four years (2000–2003) from 12 cities (Çanakkale, Kars, Hakkari, Sakarya, Erzurum, Zonguldak, Balikesir, Artvin, Çorum, Konya, Siirt, and Tekirdaǧ) spread over Turkey were used in order to train the neural-network. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine-duration, and mean temperature) are used in the input layer of the network. Solar-radiation is in the output layer. The maximum mean absolute percentage error was found to be less than 3.832% and R2 values to be about 99.9738% for the selected stations. The ANN models show greater accuracy for evaluating solar-resource posibilities in regions where a network of monitoring stations has not been established in Turkey. This study confirms the ability of the ANN to predict solar-radiation values accurately.  相似文献   

5.
Solar-energy potential in Turkey   总被引:1,自引:0,他引:1  
In this study, a new formula based on meteorological and geographical data was developed to determine the solar-energy potential in Turkey using artificial neural-networks (ANNs). Scaled conjugate gradient (SCG) and Levenberg–Marquardt (LM) learning algorithms and a logistic sigmoid transfer function were used in the network. Meteorological data for the last four years (2000  2003) from 18 cities (Bilecik, Kırşehir, Akhisar, Bingöl, Batman, Bodrum, Uzunköprü, Şile, Bartın, Yalova, Horasan, Polatlı, Malazgirt, Köyceğiz, Manavgat, Dörtyol, Karataş and Birecik) spread over Turkey were used as data in order to train the neural network. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine duration, and mean temperature) were used in the input layer of the network. Solar radiation is the output layer. One-month test data for each city was used, and these months data were not used for training. The results show that the maximum mean absolute percentage error (MAPE) was found to be 3.448% and the R2 value 0.9987 for Polatlı. The best approach was found for Kırşehir (MAPE=1.2257, R2=0.9998). The MAPE and R2 for the testing data were 3.3477 and 0.998534, respectively. The ANN models show greater accuracy for evaluating solar-resource possibilities in regions where a network of monitoring stations has not been established in Turkey. This study confirms the ability of the ANN to predict solar-radiation values precisely.  相似文献   

6.
This paper analyses the potential and the feasibility basis for the wind energy resources in some locations of coastal regions of Turkey. The dominant wind directions, the mean values, wind speeds, wind potential and the frequency distributions were determined. The results showed that Bal?kesir and Çanakkale among annual averages show higher value of mean wind speed. The mean annual value of Weibull shape parameter k is between 1.54 and 1.86 while the annual value of scale parameter c is between 2.52 m/s and 8.34 m/s. A technical assessment has been made of electricity generation from four wind turbines having capacity of 600 kW, 1500 kW, 2000 kW and 2500 kW. The yearly energy output and capacity factor for the four different turbines were calculated.  相似文献   

7.
Erkan Erdogdu   《Energy Policy》2008,36(6):2182-2190
Turkey is heavily dependent on expensive imported energy resources (oil, gas and coal) that place a big burden on the economy. Air pollution is also becoming a great environmental concern in the country. In this regard, renewable energy resources appear to be one of the most efficient and effective solutions for clean and sustainable energy development in Turkey. Turkey's renewable sources are the second largest source for energy production after coal. About two-thirds of the renewable energy produced is obtained from bioenergy, which is used to meet a variety of energy needs, including generating electricity, heating homes, fueling vehicles and providing process heat for industrial facilities. The amount of usable bioenergy potential of Turkey is approximately 17 Mtoe. This article not only presents a review of the potential and utilization of the bioenergy in Turkey but also provides some guidelines for policy makers.  相似文献   

8.
Biomass energy potential in Turkey   总被引:4,自引:0,他引:4  
Biomass energy includes fuelwood, agricultural residues, animal wastes, charcoal and other fuels derived from biological sources. It currently accounts for about 14% of world energy consumption. Biomass is the main source of energy for many developed and developing countries. In Turkey energy wood is available in the form of forest chips, fuelwood, wood waste, wood pellets, and it is also produced to a very limited extent from willow crops in short rotation forestry. The major part of wood harvested in the forest area (approximately 10 million ha) ends up as energy wood directly or indirectly after having been used for other purposes first. An overview of biomass potential and utilization in Turkey is presented. In 1999, the biomass share of the total energy consumption of the country is 10 percent. The level of fuelwood use together with that of other agricultural and animal wastes is compared with the commercial energy use within the country's global energy balance. The possibilities of increasing fuelwood production through afforestation programmes and substitution for commercial fuels are discussed. Biogas utilization in the rural regions is also reviewed, emphasizing its possible contribution.  相似文献   

9.
《Energy》1988,13(3):245-251
The regional distribution of the geothermal energy potential in Turkey, recent surveys, and utilization areas are described. The present and future roles of geothermal energy and their economic aspects are discussed. The implications of geothermal energy exploration and utilization are noted. Recommendations are made to expand geothermal-energy development.  相似文献   

10.
Geothermal energy and the other renewable energy sources are becoming attractive solutions for clean and sustainable energy needs of Turkey. Geothermal energy is being used for electricity production and it has direct usage in Turkey, which is among the first five countries in the world for the geothermal direct usage applications. Although, Turkey is the second country to have the highest geothermal energy potential in Europe, the electricity production from geothermal energy is quite low. The main purpose of this study is to investigate the status of the geothermal energy for the electricity generation in Turkey. Currently, there is one geothermal power plant with an installed capacity of 20.4 MWe already operating in the Denizli–Kizildere geothermal field and another is under the construction in the Aydin–Germencik field.This study examines the potential and utilization of the existing geothermal energy resources in Kutahya–Simav region. The temperature of the geothermal fluid in the Simav–Eynal field is too high for the district heating system. Therefore, the possibility of electrical energy generation by a binary-cycle has been researched and the preliminary feasibility studies have been conducted in the field. For the environmental reasons, the working fluid used in this binary power plant has been chosen as HCFC-124. It has been concluded that the Kutahya–Simav geothermal power plant has the potential to produce an installed capacity of 2.9 MWe energy, and a minimum of 17,020 MWh/year electrical energy can be produced from this plant. As a conclusion, the pre-feasibility study indicates that the project is economically feasible and applicable.  相似文献   

11.
Indoor natural ventilation provides both the circulation of clear air and the decrease of indoor temperature, especially, during hot summer days. In addition to openings, building dimensions and position play a significant role to obtain a uniform indoor air velocity distribution. In this study, the potential use of natural ventilation as a passive cooling system in new building designs in Kayseri, a midsize city in Turkey, was investigated. First, indoor air velocity distributions with respect to changing wind direction, magnitude and door openings were simulated by the FLUENT package program, which employs finite element methods. Using the simulated data an artificial neural network (ANN) model was developed to predict indoor average and maximum air velocities. The simulations produced by FLUENT show that the average indoor air velocity is generally below 1.0 m/s for the local prevailing wind directions. The simulations results suggest that, in addition to the orientation of buildings in accordance with prevailing wind directions, a proper indoor design of buildings in the area can significantly increase the capability of air ventilation during warm summer days. It was found that a high correlation exists between the simulated and the ANN predicted data indicating a successful learning by the proposed ANN model. Overall, the evaluation of the network results indicated that the ANN approach can be utilized as an efficient tool for learning, training and predicting indoor air velocity distributions for natural ventilation.  相似文献   

12.
Turkey is one of the developing countries. The production of electricity in Turkey is basically focused on hydro-power and thermal-power. On the other hand, measurements show that Turkey has a reasonable wind potential but this potential was not being used for many years due to government policies which supported the use of petroleum, coal, and hydro power as energy sources. In recent years there is an increasing interest in using wind energy as one of the energy sources. This paper briefly introduces a study of the determination of wind power potential of Nurda ı/Gaziantep district where is on the south of Turkey for future wind power generation projects. Evaluation of wind data; taken by Turkish Electrical Power Resources Development Administration at the foot of the mountain, Nurda ı, shows that the district has a mean wind speed of 7.3 m/s at 10 m height and observed highest value wind speed is 23.3 m/s. Mean power density of the site is found as 222 W/m2 and the results suggest that the site encourages investors especially since the terrain is a grassy plain on the side of the mountain and the measurements are taken at 10 m height.  相似文献   

13.
Turkey becomes more dependent on foreign countries for fulfilling its energy needs day by day. While 77% of the overall primary energy consumption in 1970 was met by the domestic energy sources, this percentage decreased to 28% in 2003. As for the electricity production, while 89% of the produced electricity was produced by using the domestic sources, this percentage decreased to 68% in 1970 and 44% in 2003. The percentage of dependence on foreign countries increased year by year and reached 56% in 2003. The energy sources of Turkey are renewable energy sources and coal. If both of these energy sources are used effectively, Turkey will have a capacity to produce its overall electricity production using its own sources. The incorrect policies applied in Turkey introduced oil as a primary energy source for electricity production in 1970s and Turkey defrayed the cost of this wrong application severely by oil crisis. After 2000, natural gas, which was completely imported, was introduced as an energy source and its share in electricity production reached 45%. It is vital for Turkey to question this situation in order to ensure a sustainable development using reliable energy sources.  相似文献   

14.
Turkey has very limited indigenous energy resources and has to import around 65% of primary energy to meet her needs. It is a large importer of primary energy despite having ample renewable energy sources.Turkey’s vibrant economy has led to increased energy demand in recent years. This situation is expected to continue in the near future because its economy is dependent mainly on imported oil, natural gas and electricity.This paper presents the prevailing and the expected energy situation and energy demand. Wind energy potential in Turkey is also discussed.  相似文献   

15.
The Turkish wind energy industry is one of the most competitive and fastest growing industries in the energy sector. Industrial energy demands, Kyoto agreement and carbon trade are shown as probable causes. Currently, Turkey has a total installed capacity of about 48.5 GW for electricity from all energy sources. High energy prices and unstable suppliers have stimulated Turkey's growing interest in wind business and wind power. This paper analyzes Turkey's wind energy future perspective and power generation strategy with a view to explaining Delphi approach to wind energy development. In this study, the two‐round Delphi survey was conducted by experts to determine and measure the expectations of the sector representatives through online surveys where a total of 70 experts responded from 24 different locations. The majority of the Delphi survey respondents were from 23 different universities (60%), electricity generation industries (21%), two different governmental organizations (11%), nongovernmental organizations (6%) and other institutions (2%). The article discusses not only the expert sights on wind energy technology but also all bibliometrical approaches. The results showed that Turkey's wind power installed capacity is expected to exceed 40 GW by the end of the 2020 s and in the middle of the 2030 s, and Turkey would be the European leading country in the field of electricity generation from the wind. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
James J. Murray 《Energy》1979,4(3):463-468
Hydroelectric power generation and mineral recovery from sea water appears to offer economically attractive development potential for the Qattara Depression in Egypt. First-order estimates are presented in this Note.  相似文献   

17.
Turkey is classified among the countries which have a high geothermal energy potential (Alpan, 1974). Geological and geophysical exploration is continuing in promising areas. However primary emphasis has been given to Western Anatolia during the last decade. As a result of these efforts Kizildere field was developed and a power plant put into operation on February 14, 1984. This paper summarizes the power plant and production problems encountered in wells during 1984 and future field development plans.  相似文献   

18.
Climate change policy involving a price on carbon would change the mix of power plants and the amount of water they withdraw and consume to generate electricity. We analyze what these changes could entail for electricity generation in the United States under four climate policy scenarios that involve different costs for emitting CO2 and different technology options for reducing emissions out to the year 2030. The potential impacts of the scenarios on the U.S. electric system are modeled using a modified version of the U.S. National Energy Modeling System and water-use factors for thermoelectric power plants derived from electric utility data compiled by the U.S. Energy Information Administration. Under all the climate-policy scenarios, freshwater withdrawals decline 2–14% relative to a business-as-usual (BAU) scenario of no U.S. climate policy. Furthermore, water use decreases as the price on CO2 under the climate policies increases. At relatively high carbon prices (>$50/tonne CO2), however, retrofitting coal plants to capture CO2 increases freshwater consumption compared to BAU in 2030. Our analysis suggests that climate policies and a carbon price will reduce both electricity generation and freshwater withdrawals compared to BAU unless a substantial number of coal plants are retrofitted to capture CO2.  相似文献   

19.
The major gaseous emissions (e.g. sulfur dioxides, nitrogen oxides, carbon dioxide, and carbon monoxide), some various organic emissions (e.g. benzene, toluene and xylenes) and some trace metals (e.g. arsenic, cobalt, chromium, manganese and nickel) generated from lignite-fired power plants in Turkey are estimated. The estimations are made separately for each one of the thirteen plants that produced electricity in 2007, because the lignite-fired thermal plants in Turkey are installed near the regions where the lignite is mined, and characteristics and composition of lignite used in each power plant are quite different from a region to another. Emission factors methodology is used for the estimations. The emission factors obtained from well-known literature are then modified depending on local moisture content of lignite. Emission rates and specific emissions (per MWh) of the pollutants from the plants having no electrostatic precipitators and flue -gas desulfurization systems are found to be higher than emissions from the plants having electrostatic precipitators and flue -gas desulfurization systems. Finally a projection for the future emissions due to lignite-based power plants is given. Predicted demand for the increasing generation capacity based on the lignite-fired thermal power plant, from 2008 to 2017 is around 30%.  相似文献   

20.
《Energy Policy》2006,34(17):2690-2701
About 80% of the electric energy production in Turkey is provided by thermal power plants which use fossil fuels. Lignite, the most abundant domestic energy source, is consumed in most of these plants. Turkey has approximately 0.85% of the world's lignite reserves; however, the Turkish lignites have low calorific value and contain relatively higher amounts of ash, moisture, and sulfur. Nearly 80% of the lignite mined in Turkey is consumed in the thermal power plants since it is not appropriate for use in other types of industry and heating. In Turkey, 13 large-scale lignite-fired thermal power plants are responsible for a considerable amount of air pollution. Therefore, it is crucial to decide on the optimal place and technology for the future thermal power plants, and to equip the currently operating plants with newer technologies that will reduce amount of contaminants released into the air.In this study, the effects of the lignite-fired thermal power plants which have an important place in the energy politics in Turkey on the air pollution are investigated. We focused on SO2 pollution and the regions in which the SO2 emissions were concentrated and diffused. The pollutant diffusion areas were projected and mapped based on parameters such as wind data, isotherm curves, population density, and topographic features by using Geographical Information System (GIS) software, ArcView. The contribution of the thermal power plants to SO2 pollution was also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号