首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A machine vision and background remover (BR)-based inspection method is proposed in this paper for solder defects inspection on a printed circuit board (PCB). The solder location is identified first using an unloaded PCB as the BR, thus reducing the amount of information needed for the following process. A set of candidate features is then calculated based on both binary and gray-level images. The defects are classified based on box plots of the feature value. The classification correctness reaches 97.3%. This methodology combines solder joints location identification and defects classification, making the inspection of PCB solder joints easier, without the requirement for special lighting or special instruments such as ultra-sonic and thermal sensors.  相似文献   

2.
Mechanical and microstructural properties of SnAgCu solder joints   总被引:2,自引:0,他引:2  
Mechanical and microstructural properties of SnAgCu solder joints with hypoeutectic, eutectic and hypereutectic compositions were studied. Eutectic SnPb joints were used as the reference. Reflowed lap shear specimens made of FR-4 glass epoxy printed circuit boards with OSP and NiAu surface finishes were used in the tests. Mechanical properties and microstructural features of the joints were examined in the as-reflowed condition and after isothermal aging at 85 °C for 1000 h. Both the composition and PCB surface finish had a notable effect on the mechanical behaviour of the SnAgCu solder joints. The shear strength value of SnAgCu solder joints was mainly dependent on the size and distribution of Ag3Sn dispersions. The coarseness of the dispersions depends strongly on the amount of Ag in the solder alloy, the cooling rate after the reflow and the aging history of the solder joints.  相似文献   

3.
We present an optical contactless method for testing the quality of solder joints in surface mounted components by measuring their thermal dynamic behaviour. We detect surface normal displacements induced by Joule heating with a high resolution interferometnc laser probe. This probing method, based upon a homodyne Michelson interferometer, is an interesting tool for investigating the mechanisms of heat deposition and flow inside electronic devices. It allows the precise time evolution of the surface normal displacement to be measured (the laser probe has subnanometric resolution). This new approach of thermal behaviour laser testing is based upon the analysis of the diffusion of heat produced by the Joule effect in the structure (lead, solder and copper strip) from short current pulses and will influence heat diffusion. Solder joint failures (intermetallics, hidden voids, etc. ) behave as a thermal barrier. The optical test consists of measuring the dynamics of the solder joint expansion, and the variations from a standard response (good quality solder joints) will reveal defects. Important variations have been observed in solder joints that have undergone thermal cycling ageing tests. We have also investigated the thermal response of joints on IMS (insulated metallic substrate) and epoxy substrates. They show a very different time response.  相似文献   

4.
Effects of Pr addition on wettability, microstructure of Sn3.8Ag0.7Cu solder were studied, the mechanical properties of solder joints were investigated and the fracture morphologies were also analyzed in this paper. The results indicate that adding appropriate amount of Pr can evidently improve the wettability of solder, and it is also found that Pr can refine the β-Sn dendrites and reduce the intermetallic compounds growth inside the solder due to the fine PrSn3 particles formed in the solder which can act as heterogeneous nucleation sites. Moreover, the joints soldered with the SnAgCuPr solders possess sound mechanical properties which may result from the finer microstructure improved by the Pr.  相似文献   

5.
Nanoindentation testing (NIT) was used to investigate micromechanical properties of (i) as-fabricated, (ii) thermomechanically fatigued (TMF), and (iii) TMF and crept lead-free solder joints. NIT also served to generate information for a database on lead-free solder joints. Sn–Ag-based solder materials used in this study included a binary eutectic alloy, one ternary alloy, and two quaternary alloys. TMF solder joints were thermally cycled for 0, 250, 500, 1000 cycles between –15 and 150 °C. Using NIT, mechanical properties such as hardness, elastic modulus, strength trends, creep behavior, and stress exponent for power-law creep were obtained on small (nominally, 100 m thick) solder joints. Because the volume of material probed by the indenter during NIT is small and highly localized, the properties observed depended strongly on the particular joint microstructure of the indent location. Scanning electron microscopy (SEM) was used to image the nanoindents and monitor deformation and fracture events that resulted from the indenting.  相似文献   

6.
7.
An automated environmental stress testing system, designed and assembled for testing of high pin-count integrated circuit packages and surface mount solder joint reliability is described. Details are given of the software and hardware used in the control of the environment chambers used, in monitoring of test specimen reliability parameters and in control and monitoring of special purpose integrated circuits for testing of IC package reliability. In addition, an automatic system for monitoring of the resistance of fine pitch surface mount solder joints and for detection and recording of thermally induced intermittent open circuits in these joints is described.  相似文献   

8.
A comparative study of silver-epoxy and tin-lead solder in their joints with copper was made through simultaneous mechanical and electrical measurements during debonding. Silver-epoxy joints to copper abruptly increased in contact electrical resistivity upon completion of shear debonding, whereas tin-lead soldered joints to copper did not, due to the higher ductility of solder compared to silver-epoxy. The contact resistivity before debonding was higher for silver-epoxy than solder. Cleansing of the copper surface was essential for silver-epoxy, but not for solder. Acetone washing of copper surface helped silver-epoxy joints, but not soldered joints. Acid washing helped soldered joints more than acetone washing, but helped silver-epoxy joints to the same extent as acetone washing.  相似文献   

9.
Solder joints in electronic packaging systems are becoming smaller and smaller to meet the miniaturization requirements of electronic products and high density interconnect technology. Furthermore, many properties of the real solder joints at the microscale level are obviously different from that of bulk solder materials. Creep, as one of the key mechanical properties at elevated temperatures, can impair the reliability of miniature solder joints in electronic devices. However, there is a lack of knowledge about the comparative creep properties of microscale solder joints of different sizes. Most previous studies have focused on the creep properties of bulk solder materials or solder joints of the same size. In this research, to determine whether a size effect exists for creep properties of solder joints or not, we characterized the creep behaviors of Sn–3.0Ag–0.5Cu lead-free solder joints under tensile loading modes using microscale butt-joint specimens with a copper-wire/solder/copper-wire sandwich structure with two different sizes. Also, the creep failure mechanisms were investigated. Experimental results show that the creep activation energy and creep stress exponent are very similar for both sizes of solder joint. However, under the same testing conditions, the joints with a larger size exhibit a much higher steady-state creep rate and a shorter creep lifetime than the smaller joints.  相似文献   

10.
Solder paste is one of the most important process materials today in surface mount technology. Stencil printing of solder paste onto PCBs constitutes an important stage in the reflow soldering of surface mount devices. A high proportion of the solder-related defects can be attributed to the stencil printing process. This is likely to continue with the trend toward miniaturization and the implementation of die-size packages. To achieve repeatable solder deposits from board-to-board and pad-to-pad requires an understanding of the paste rheology. One of the key factors that influences solder paste rheology is temperature. A change in temperature will cause the viscosity of the solder paste to change. This change could be ambient or from the stencil printing process itself. This is likely to impact on the performance of the solder paste. In this paper, we present the effect of temperature on the rheological properties of solder paste and the flux vehicle system. Current models show a single variable dependence of viscosity with temperature. The model presented here incorporates shear rates and can be used for any solder paste or non-Newtonian material. The effects of temperature on solder paste flux medium, particle size and distribution, and metal alloy content are also presented.  相似文献   

11.
The reliability of microelectronic components under cyclic thermomechanical loading is an important problem especially for new leadfree solder alloys. To investigate the low cycle fatigue strength of solder joints, material models are required, that can describe the constitutive inelastic deformation and damage behavior of solder materials. Such models form the basis for advanced numerical analyses by the finite element method. In the present contribution an appropriate material model that combines the viscoplastic constitutive model of Chaboche-type with the damage law of A.C.F. Cocks for porous creep will be introduced. The algorithm is reported for an implementation as a user defined material subroutine into the FEM-code ABAQUS®. The necessary parameters of the material model are identified using results of miniaturized double lap-shear experiments and tensile tests for a Sn96Ag3Cu1 solder alloy at various temperatures. The comparison of experimental and numerical results shows a good agreement with respect to strain rate sensitivity, relaxation and damage behavior of the investigated solder material. Finally, some numerical applications to surface mounted microelectronic devices are presented.  相似文献   

12.
Thermal cycling test in Sn-Bi and Sn-Bi-Cu solder joints   总被引:2,自引:0,他引:2  
The eutectic SnBi solder alloy is a candidate for Pb-free replacement of the conventional eutectic SnPb solders. This study presents series of results on the binary eutectic SnBi and ternary SnBi-1 wt % Cu a solder joints. Compositional analysis and wettability of the as-fabricated solder alloys are reported. In addition, microstructure, adhesion strength, fracture surface and contact resistance of the solder joints are also evaluated. The results of the wetting balance show that the addition of 1 wt % Cu has little effect on the contact angle of the eutectic SnBi solder alloy with various metallization layers. The adhesion strength of solder joints degrades abruptly after 2000 thermal cycles. In addition, thermal cycling would result in cracking in the solder joints, which is due to the mismatch in thermal expansion coefficients. Portions of the thermal fatigue cracks nucleate at the edge of the solder fillet, and then propagate along the solder/conductor interface. Some cracks are, however, through the Al2O3 substrate. The contact resistance of the solder/Cu joint does not increase after thermal cycling since the resistivity of Cu6Sn5 is lower than that of the solder. The solder joints of 42Sn-58Bi/Cu, SnBi-1Cu/Cu, 42Sn-58Bi/PtAg, and SnBi-1Cu/PtAg assemblies maintain their integrity after 2000 thermal cycles since the increase in contact resistance is rather small (ΔR<0.5 mΩ).  相似文献   

13.
To address the wide variety of solder joint configurations, the authors have developed and applied a physics-of-failure model to predicting the service life of solder joints under thermal cycling conditions. The wide variety of solder joint geometries, materials and environments makes it impractical to develop and apply empirical models to predicting the service life of solder joint interconnects. On the other hand, a physics-of-failure model that describes the failure mechanisms in solder joints can be applied to a wide range of conditions. The physics-of-failure model framework is described and a model is demonstrated for predicting the failure of a leadless surface mount solder joint under slow thermal cycling conditions.  相似文献   

14.
对倒装焊电子封装可靠性进行了热循环实验和有限元模拟,结果表明,有底充胶(underfill)时,SnPb焊点的热循环寿命可提高约16倍,并确定了Coffin-Manson半经验方程的参数,采用3种底充胶材料模型,亦即定常弹性模型,温度相关弹性模型和粘弹性材料模型,描述了底充胶U8347-3的力学性能。模拟结果表明,材料模型影响计算得到的SnPb焊点的塑性应范围,封装形变以及底充胶/芯片界面应力,采用弹性材料模型可能过高估计了SnPb焊点的热循环寿命和界面应力。  相似文献   

15.
The mechanical properties of Sn-rich solder alloys are directly related to their heterogeneous microstructure. Thus, numerical modeling of the properties of these alloys is most effective when the microstructure is explicitly incorporated into the model. In this review, we provide several examples where 2D and 3D microstructures have been used to model the material behavior using finite element modeling. These included (a) 3D visualization of the solder microstructure, (b) 3D microstructure-based modeling of tensile behavior, (c) 2D modeling of the effect of intermetallic volume fraction and morphology on shear behavior of solder joints, and (d) prediction of crack growth in solder joints. In all these cases, the experimentally observed behavior matches very well with the microstructure-based models.  相似文献   

16.
Sn–Bi solder was proposed as one of the most promising substitutes for lead solder due to its lower melting temperature, good wettability, good yield strength and cost efficiency. With Ag elements added, the mechanical properties of Sn–Bi solder were improved obviously. There are two ways that are commonly used to add the reinforced particles into the solder. The first way (Way I) is to blend the reinforced particles with solder powders together, and then followed by pressure forming, sintering, cooling, crystallization and serious machining methods under inert atmosphere to make the solder paste. Another way (Way II) is to directly add the reinforced nano or micro particles into the solder paste by sufficient mechanical-stirring. In this research we would like to get fully understanding on the effects of these two ways of Ag addition on the mechanical properties of Sn–Bi–Ag solder joints during aging. Sn57.6Bi0.4Ag solder stands for the Way I and the doped Sn58Bi + 0.4Ag solder stands for the Way II. These two kinds of joints were compared via micromorphology observation, thermal failure analyses as well as balls shear strength measurement after different aging time (under 100 °C, from 0 to 800 h). The mechanical properties of Sn57.6Bi0.4Ag and the doped Sn58Bi + 0.4Ag solder joints during aging were shown to be associated with the changes of micromorphology, the dissolution of IMCs, as well as the flatness of the joints’ interface. Before long-time aging, the doped Sn58Bi + 0.4Ag solder joints showed better mechanical performance than Sn57.6Bi0.4Ag solder joints. During aging, Sn56.7Bi0.4Ag solder joints had better performance in preventing the dissolution of Ni–Sn IMCs into the solder side, having smoother interfaces, comparing with Sn58Bi + 0.4Ag solder joints. The degenerated phenomenon of Ag nanoparticle reinforcement seriously happened in the doped Sn58Bi + 0.4Ag solder joints. After longtime aging, Sn57.6Bi0.4Ag solder joints had better mechanical properties than the doped Sn58Bi + 0.4Ag solder joints.  相似文献   

17.
The pin-in-paste process was developed and validated for a contract manufacturing PCB assembly environment. A systematic approach was used to implement this process in a production environment. The sequence used for process development included solder paste volume calculations for through hole components (THCs), stencil aperture design for the pin-in-paste application, solder paste deposition through stencil printing, reflow profile development, inspection, and testing. A series of experiments were conducted to identify the 'process window' associated with each process step. The required volume of solder paste was computed using a set of empirical equations. The stencil printing process was 'optimized' using a 'design of experiments' based approach. Response surfaces were plotted and used to identify the 'optimal' print parameters. Thermal profiles were developed for reflow soldering the THCs in conjunction with the surface mount components (SMCs) in a single reflow pass. The assemblies were built using the 'optimized' process parameters. The assemblies were then inspected under an X-ray system to check for solder voiding. Electrical testing was then done to check for solder shorts and open connections. The shape of the solder joints was similar to a wave soldered joint, voiding was minimal, and there was no instance of solder shorts or an open connection. The solder joints were then cross-sectioned as a part of destructive testing. The cross sections showed the formation of good positive fillets (both top and bottom fillet), the solder paste had filled the plated through hole (PTH) completely, and voiding was minimal.  相似文献   

18.
Solder bridge is a serious defect of solder joints in ultrafine pitch electronic device assemblies. Generation of the solder bridge is closely related to forming process of the solder joints. A three-dimensional model to simulate the formation of the solder bridge of QFP256 (quad flat packaging with 256 leads) is established and numerically calculated to predict the formation shape of the solder joints using surface evolver program. Based on the model, influence of structure of pads printed on circuit board on solder bridging is investigated. The results show that there is a critical solder volume Vc for solder joints to avoid solder bridging, and parameters of the pad size influence the critical solder volume.  相似文献   

19.
In this study, the solderability of Sn–3.5Ag–0.5Cu–xDy solders were investigated and the shear strength properties of joints with Cu substrate were investigated. The results indicated that a small amount Dy addition can improve the solderability, and the optimal amount of Dy was 0.025 wt%. The maximum shear strength can be found with 0.025 wt% Dy addition, improved by 74%. With the observation of the fracture morphology, it was found that a small amount Dy can improve the ductility of the solder joints; but excessive amount of Dy would deteriorate the shear strength and form large dimples on the fracture surface.  相似文献   

20.
We evaluated the Sn whisker growth behavior of Sn–Ag–Cu solder fillets on lead frames of quad flat packages (QFPs) upon OSP printed circuit boards that were exposed to 85 °C/85% relative humidity (RH) exposure. Three different concentrations of halogen flux for activated Sn-3.0wt%Ag–0.5wt%Cu were used to solder in air and in an inert N2 reflow atmosphere. The lead frames of the QFPs consisted of Sn plated Cu and Fe-42wt%Ni (alloy 42). Sn whiskers were observed on the surface of the QFP solder fillet joints that were reflowed with halogen containing flux in an air atmosphere. A substantial amount of Sn oxides were formed in those solder fillets while whisker growth and the amount of Sn oxides increased with the halogen content. Sn oxide formation apparently enhanced whisker formation. The combination of air reflow atmosphere and high halogen flux was the worst combination for solder fillet oxidation resulting in Sn whisker formation regardless of the electrode’s lead frame composition of Cu or alloy 42. In contrast, an inert N2 reflow atmosphere obviously prevented Sn whisker formation on Sn–Ag–Cu solder fillets under all conditions used in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号