首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
以精制石油焦为原料,经球磨、炭化和石墨化制备负极材料,并组装成扣式电池.考察影响电化学性能的石墨化关键性能,包括表面形貌、比表面积、粒度分布、石墨化度、元素组成等,进行充放电、循环伏安、交流阻抗测试.结果表明,首次嵌锂容量为349.2 mAh/g,首次库伦效率为78%;500次循环后,容量上升为440.6 mAh/g,...  相似文献   

2.
硅基负极材料比容量是石墨和钛酸锂的理论比容量的10倍,电位比相应的石墨材料高0.15V,是可替代石墨的新型负极材料。硅基负极材料存在的应用问题是体积膨胀效应,解决办法是纳米化和做成复合材料。日立麦克赛尔和三井金属已经工业化生产这种负极材料。  相似文献   

3.
石墨类碳负极材料作为电化学嵌锂宿主材料的研究一直是锂离子电池负极材料研究的重点。本文简述了石墨作为锂离子电池负极材料的结构,分析了石墨作为负极材料的优缺点,综述了石墨负极材料的改性方法及其研究进展,指出了石墨改性的发展方向。通过改性处理可以提高可逆比容量和首次库仑效率,改善其倍率性能和循环稳定性,有效改善石墨电极的综合电化学性能。  相似文献   

4.
采用石墨化炉对腐植酸进行石墨化处理,以腐植酸基石墨化材料为原料,葡萄糖和片状石墨为中间相,经高温(750℃)炭化处理制备煤系腐植酸基炭/葡萄糖/石墨复合材料;采用扫描电子显微镜(SEM)、X射线衍射(XRD)法和电化学测试系统对该材料的形貌、微晶结构和电化学性能进行表征.结果表明:片状石墨分散在腐植酸基石墨化材料周围,且被无定型炭包覆.C-C-2复合材料作为锂离子电池的负极材料,具有较高的比容量,在0.1C倍率下的首次可逆比容量为307.3mA·h/g,首次库仑效率为76.3%;在1C和2C倍率下,50个充放电循环后,可逆比容量分别为283.3mA·h/g和152.2mA·h/g,容量保持率分别高达97.9%和97.5%;具有良好的循环稳定性及大倍率性能.  相似文献   

5.
以煤系针状焦生焦为原料、自制高性能煤沥青为黏结剂,对针状焦生焦进行造粒加工处理,制备了具有高能量密度和倍率性能的二次颗粒人造石墨负极材料,并研究了黏结剂沥青添加量分别为5%(质量分数,下同),8%和12%时二次颗粒人造石墨负极材料的理化指标和电化学性能。结果表明:当黏结剂沥青添加量为8%时,造粒工艺效果最为理想,形成的二次颗粒人造石墨负极材料大小较均匀,振实密度为1.10 g/cm3,在0.1 C电流密度下首次充电比容量为345.7 mAh/g,首次库伦效率为95.6%,高于其他黏结剂量下制备的二次颗粒人造石墨负极材料的首次充电比容量和首次库伦效率,在倍率性能测试方面也展现出优异的高倍率充放电能力。  相似文献   

6.
电极材料的研究开发是钠离子电池技术发展和应用的关键之一,碳基负极材料具有原料丰富、成本低廉、可逆容量较大及倍率性能良好等优点,备受国内外专家、学者的关注。本文系统综述了钠离子电池碳基负极材料的最新研究进展,就石墨类和非石墨类碳基负极材料的分类和掺杂改性研究进行了详细介绍。石墨类材料有石墨和石墨烯,非石墨类材料有软碳和硬碳;元素掺杂改性主要是以N和S为主,并分别阐述了各种碳基负极材料的电化学性能及可能的充放电机理。分析了目前碳基负极材料面临着首次库仑效率较低、电压滞后现象严重、循环稳定性能不佳等问题,未来的发展方向主要是增大碳基负极材料的碳层间距、结构的纳米化以及优化制备工艺,以确保循环稳定性及倍率性能的优异性。  相似文献   

7.
以表面改性针状焦粉为原料,分别采用坩埚炉、箱体炉及连续直热式装备进行石墨化处理,制备人造石墨锂离子电池负极材料,详细研究了3种工艺石墨化负极材料的理化指标、电化学性能。结果表明,箱体石墨化同其他工艺相比,加工成本低,自动化程度高,对环境友好,有望成为人造石墨负极材料石墨化主流工艺。  相似文献   

8.
以宁夏石嘴山太西无烟煤为原料,经过粗碎、磨粉和石墨化等简单工艺制备了无烟煤基锂离子电池负极材料。测试结果表明,石墨化无烟煤基负极具有92.23%的石墨化度,表现出340.2 mA·h/g的可逆容量,与煅前石油焦基石墨负极容量相当。与针状焦基石墨负极相比较,无烟煤基石墨负极虽然克容量较低,但在电池的循环稳定性方面具有较大优势。  相似文献   

9.
低硫石油焦用于生产锂离子电池负极材料是提高其附加值和节约资源的一个重要途径.本研究将普通石油焦经过碳化和石墨化制备出人造石墨,并将其电化学性能与针状焦进行了系统性地对比,探索其作为锂电负极材料的应用性.结果表明:仅碳化后的样品由于首次库伦效率不高(73.41%)、250次循环稳定容量偏低[202.2(mA·h)/g],...  相似文献   

10.
锂离子电池因其质量轻,能量密度高等优良性能,是近几年来电化学界研究的热点。但锂离子电池用石墨作负极还存在一些问题,需要对石墨改性处理。本文介绍了石墨的一种改性方法:沥青包覆石墨法,可有效降低石墨的比表面积,从而大幅度提高了石墨负极材料的首次可逆容量和库仑效率,改善电池的循环性能等。  相似文献   

11.
负极材料对于可充电锂电池的容量和提高和循环性能的保证具有重要的意义。通常用于可充电锂电池的负极材料有碳类(如石墨、软碳、硬碳等)、金属氧化物、金属硫化物等。其中,尤以石墨等材料的技术比较成熟,综合性能优良、价廉易得;而其它材料则存在一定问题,尚处于研究阶段。但实际使用与研究表明,可充电锂电池所用的石墨负极材料首次不可逆容量损失较大,首次充放电效率低。这是目前可充电锂电池存在的缺点,影响了其功能的发挥。  相似文献   

12.
沥青包覆天然石墨作锂离子电池负极材料的研究   总被引:1,自引:0,他引:1  
将天然鳞片石墨与煤沥青以7:3的比例混合研磨,压力成型并粉碎至大约20pm后将其进行炭化得到炭化样品,并取部分炭化样品对其石墨化得到石墨化样品,将得到的炭化、石墨化样品及天然石墨分别进行XRD、SEM测试,并作为锂离子电池负极材料装配电池后进行电化学性能测试。结果表明,经处理后在石墨表面包履了一层沥青,电化学性能提高,炭化后的包覆样品首次效率比石墨提高了10%,但充放电容量偏低,而石墨化后的包覆样品放电容量及首次效率比天然石墨分别提高了16mAh/g和11%,不可逆容量降低了59mAh/g,稳定后放电容量为380mAh/g,效率为99.6%。  相似文献   

13.
锂离子电池碳负极材料由于来源广泛、成本低廉、化学稳定性好,一直成为商品化二次电池电极材料的首选.而多孔高分子裂解碳材料由于比表面积大、吸附能力强、电导率高、制备工艺简便等优点在新能源锂离子电池领域得到广泛应用.综述了锂离子电池常见的碳负极材料如天然石墨、中间相碳微球、无定形碳、高分子裂解碳等性能特点;并重点阐述了酚醛树...  相似文献   

14.
综述了锂离子二次电池用炭负极材料:石墨、各种体系炭纤维、石墨化中间相炭微球、焦炭、热解炭的结构与电性能等特点,并通过比较选择出最适宜的炭负极材料。  相似文献   

15.
综述了作为锂离子电池炭负极材料的石墨类、非石墨类、纳米材料等方面的研究成果,介绍了上述各种材料的特点。通过对石墨类材料的改性,在炭材料中形成纳米级孔、洞、通道等都可能提高锂的可逆贮量和减少不可逆容量损失,有利于负极比容量的提高,从而有利于进一步提高锂离子电池的比能量。  相似文献   

16.
针状焦由于具有价格低廉、来源广泛、石墨化后电性能好等优点,已经在锂离子电池负极材料中得到了广泛的应用。为改善由针状焦合成的人造石墨在锂离子电池中与电解液的相容性,提高其循环寿命,以酚醛树脂为包覆剂对针状焦进行了包覆改性,再进过碳化、石墨化制备得到了包覆改性人造石墨负极材料。研究了其电化学性能,确定了最佳的包覆量。  相似文献   

17.
侯宾  宗文 《炭素技术》2023,(5):70-72
“双碳”目标实施计划和要求的提出为锂离子电池负极材料石墨化行业的发展提出了新的要求也带来了新的机遇。如何做到提产、节能、降耗已成为石墨化行业急需解决的难点问题。本文概述了以人造石墨作为锂离子电池负极材料其石墨化的发展现状,并对其发展趋势进行了展望。  相似文献   

18.
相比于石墨负极,纳米硅负极材料虽然具备很高的理论比容量,但低的振实密度和面积载量严重削弱了体积比容量和质量比容量。因此,设计高振实密度微米硅基负极可以赋予更好的综合性能。本文综述了近些年锂离子电池负极用硅基材料微米化的研究方向和进展,阐述了不同工艺存在的问题,为其未来的发展方向提出策略。  相似文献   

19.
硅氧负极材料(SiOx)比容量是石墨的近4倍,被视为最有前景全面商用的下一代锂离子电池负极材料,但首次Goulombic效率(ICE)偏低这一问题长期困扰着Si Ox的应用。预锂化能使Si Ox的ICE上升,提高锂离子电池系统能量密度,为Si Ox全面应用铺平道路。本综述概述了近年来Si Ox负极预锂化的应用及研究进展,按照技术特点分类介绍了预锂化技术的最新研究进展,并列举了其中的典型方案与效果,重点讨论其反应机理、面临的挑战及潜在解决方案等,还对未来预锂化技术的发展进行了展望,供后续的研究与工业化参考借鉴。  相似文献   

20.
用柠檬酸对废旧锂离子电池的负极材料石墨进行包覆再生,通过X-射线衍射仪、场发射扫描电子显微镜、拉曼光谱仪对包覆效果进行了评价,分析比较了不同包覆比(柠檬酸与石墨废料的质量比)对充放电性能、倍率性能、阻抗性能、循环伏安性能的影响.结果表明,柠檬酸包覆可有效修复负极材料石墨的表面结构,并大幅提高电化学性能;当包覆比为1:1...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号