首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, five conventional LNG processes were investigated by energy and exergy analysis methods. On the basis of the energy analysis, three‐stage process of Linde AG and Stat oil (mixed fluid cascade [MFC]) has less energy consumption than the other ones (0.254 kWh/kg liquefied natural gas). Also, coefficient of performance of the cycles of this process is higher compared with the other ones. Exergy analysis results showed that the maximum exergy efficiency is related to the MFC process (51.82%). However, performance of the MFC process in terms of quality and quantity of energy consumption is considerable. But using three cycles in this process needs more components and consequently more fixed costs. In this study, sensitivity of coefficient of performance, specific energy consumption, and indexes of exergy analysis were also analyzed versus important operating variables for all cases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents the energy and exergy analyses of sugar production stages by using the operational data from Bor Sugar Plant, Turkey. For these purposes, all stages of sugar production, considered as a steady-state open thermodynamic system, were analysed by employing the first and second law of thermodynamics. In this regard, the first and second law efficiencies, the magnitude and place of exergy losses in these production stages were estimated and discussed in detail. It was concluded that the exergy loses took place mostly during the sherbet production process (ηI,sp=96.8% ηII,sp=49.3%) because of the irreversibility in the sub-operation stages, which are vapour production, circulation sherbet mixing and bagasse compression. Therefore, it is generally suggested that the irreversibility, mostly stem from the finite temperature differences at the production stages, should be reduced to conduct more productively the sugar production process. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
The energy and exergy analyses of the drying process of olive mill wastewater (OMW) using an indirect type natural convection solar dryer are presented. Olive mill wastewater gets sufficiently dried at temperatures between 34 °C and 52 °C. During the experimental process, air relative humidity did not exceed 58%, and solar radiation ranged from 227 W/m2 to 825 W/m2. Drying air mass flow was maintained within the interval 0.036–0.042 kg/s. Under these experimental conditions, 2 days were needed to reduce the moisture content to approximately one-third of the original value, in particular from 3.153 gwater/gdry matter down to 1.000 gwater/gdry matter.Using the first law of thermodynamics, energy analysis was carried out to estimate the amounts of energy gained from solar air heater and the ratio of energy utilization of the drying chamber. Also, applying the second law, exergy analysis was developed to determine the type and magnitude of exergy losses during the solar drying process. It was found that exergy losses took place mainly during the second day, when the available energy was less used. The exergy losses varied from 0 kJ/kg to 0.125 kJ/kg for the first day, and between 0 kJ/kg and 0.168 kJ/kg for the second. The exergetic efficiencies of the drying chamber decreased as inlet temperature was increased, provided that exergy losses became more significant. In particular, they ranged from 53.24% to 100% during the first day, and from 34.40% to 100% during the second.  相似文献   

4.
Energy and exergy analyses of a raw mill in a cement production   总被引:2,自引:0,他引:2  
Cement production has been one of the most energy intensive industries in the world. In order to produce raw materials preparation, clinker and rotary kilns are widely used in cement plants. The objective of this study is to perform energy and exergy analysis of a raw mill (RM) and raw materials preparation unit in a cement plant in Turkey using the actual operational data. The RM has a capacity of 82.9 ton-material hourly. Both energy and exergy efficiencies of the RM are investigated for the plant performance analysis and improvement, and are determined to be 84.3% and 25.2%, respectively. The present technique is proposed as a useful tool in the analysis of energy and exergy utilization, developing energy policies and providing energy conservation measures.  相似文献   

5.
Transporting energy in liquefied forms results in reduction in volume, which enables energy to be transported economically over long overseas distances. In this study, liquefied natural gas, liquid ammonia and methanol are proposed to transport the energy of natural gas in different forms to overseas. Due to temperature difference between the energy storage medium and the ambient, a portion of liquefied energy carriers mass is lost as boil-off gas (BOG). Therefore, a technical assessment based on energy and exergy analyses is conducted in this work to assess the total required energy and losses due to BOG for each energy carrier. To make a fair comparison among the energy carriers, the ship volume capacity is the fixed factor. The results show that the total daily energetic BOGs for LNG, ammonia, and methanol are calculated as 0.610%, 0.098%, 0.034% while the exergetic BOGs are 0.491%, 0.068%, 0.032%, respectively. Ammonia and methanol generate significantly less daily BOG, respectively, compared to LNG during the full supply chain, which make them alternative for efficient energy carrier transport.  相似文献   

6.
In this study, a solar thermal based integrated system with a supercritical-CO2 (sCO2) gas turbine (GT) cycle, a four-step Mg–Cl cycle and a five-stage hydrogen compression plant is developed, proposed for applications and analyzed thermodynamically. The solar data for the considered solar plant are taken for Greater Toronto Area (GTA) by considering both daily and yearly data. A molten salt storage is considered for the system in order to work without interruption when the sun is out. The power and heat from the solar and sCO2-GT subsystems are introduced to the Mg–Cl cycle to produce hydrogen at four consecutive steps. After the internal heat recovery is accomplished, the heating process at required temperature level is supplied by the heat exchanger of the solar plant. The hydrogen produced from the Mg–Cl cycle is compressed up to 700 bar by using a five-stage compression with intercooling and required compression power is compensated by the sCO2-GT cycle. The total energy and exergy inputs to the integrated system are found to be 1535 MW and 1454 MW, respectively, for a 1 kmol/s hydrogen producing plant. Both energy and exergy efficiencies of the overall system are calculated as 16.31% and 17.6%, respectively. When the energy and exergy loads of the receiver are taken into account as the main inputs, energy and exergy efficiencies become 25.1%, and 39.8%, respectively. The total exergy destruction within the system is found to be 1265 MW where the solar field contains almost 64% of the total irreversibility with a value of ~811 MW.  相似文献   

7.
This study presents comparative energy and exergy analyses of a four-cylinder, four-stroke spark-ignition engine using gasoline fuels of three different research octane numbers (RONs), namely 91, 93 and 95.3. Each fuel test was performed by varying the engine speed between 1200 and 2400 rpm while keeping the engine torque at 20 and 40 Nm. Then, using the steady-state data along with energy and exergy rate balance equations, various performance parameters of the engine were evaluated for each fuel case. It was found that the gasoline of 91-RON, the design octane rating of the test engine, yielded better energetic and exergetic performance, while the exergetic performance parameters were slightly lower than the corresponding energetic ones. Furthermore, this study revealed that the combustion was the most important contributor to the system inefficiency, and almost all performance parameters increased with increasing engine speed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
This paper analyzes an integrated HyS cycle (hybrid sulfur cycle), isobutane cycle and electrolyzer for hydrogen production. The operating parameters such as concentration, pressure and temperature are varied to investigate their effects on the energy and exergy efficiencies of the system with/without heat recovery and integration, as well as the decomposer and rate of hydrogen produced. A new heat exchanger network is also developed to recover heat within the HyS cycle in the most efficient manner. The exergy destruction rate in each component is analyzed and discussed. From the results, increasing the pressure is beneficial up to 3222 kPa, after which the performance remains constant. The exergy efficiency varies more significantly with operating parameters than the energy efficiency. The maximum exergy destruction occurs in the heat exchanger so this component should be the focus to enhance the overall performance of the system.  相似文献   

9.
This paper analyzes a new low-temperature electrolysis hydrogen production system using molybdenum-oxo catalysts in the cathode and a platinum based anode. A thermodynamic model is developed for the electrolysis process in order to predict and analyze the energy and exergy efficiencies. The new electrolysis system with molybdenum-oxo catalysts consists of two half cells of PEM (proton exchange membrane) and alkaline electrolysis. The effects of temperature and membrane thickness are reported at varying current densities. The results are presented and compared with previous studies to demonstrate the promising performance of the system.  相似文献   

10.
In this paper the energy and exergy analyses in drying process of porous media using hot air was investigated. Drying experiments were conducted to find the effects of particle size and thermodynamics conditions on energy and exergy profiles. An energy analyses was performed to estimate the energy utilization by applying the first law of thermodynamics. An exergy analyses was performed to determine the exergy inlet, exergy outlet, exergy losses and efficiency during the drying process by applying the second law of thermodynamics. The results show that energy utilization ratio (EUR) and exergy efficiency depend on the particle size as well as hydrodynamic properties. Furthermore, the results of energy and exergy presented here can be applied to other porous drying processes which concern effect of porosity as well as grain size.  相似文献   

11.
This paper is concerned with the investigation of the energy and exergy analyses in convective drying process of multi-layered porous media. The drying experiments were conducted to find the effects of multi-layered porous particle size and thermodynamics conditions on energy and exergy profiles. An energy analysis was performed to estimate the energy utilization by applying the first law of thermodynamics. An exergy analysis was performed to determine the exergy inlet, exergy outlet, exergy losses during the drying process by applying the second law of thermodynamics. The results show that the energy utilization ratio (EUR) and the exergy efficiency depend on the particle size as well as the hydrodynamic properties and the layered structure, by considering the interference between capillary flow and vapor diffusion in the multi-layered packed bed.  相似文献   

12.
分析了IFP-Axens公司开发的混合制冷剂循环Liquefin工艺关键技术,在此基础上设计了一种全新的小型混合制冷剂液化流程。比较了三个流程的主要流程参数,综合分析了换热器冷热负荷曲线和温差曲线。结果表明,压缩机和换热器的损失是循环的主要损失,可以通过选用效率更高的压缩机,或者改变压缩系统结构减少损;提高返流轻组分节流后压力可有效降低换热温差,通过进一步优化制冷剂组成和运行压力,可使换热温差更加均匀,减少换热器损,提高流程的经济性。  相似文献   

13.
Oleg Ostrovski  Guangqing Zhang   《Energy》2005,30(15):2772-2783
The paper discusses the concept of exergy, the energy and exergy balances of blast furnace ironmaking and DIOS-type direct ironsmelting processes, and exergy losses in these processes. The overall fuel efficiency of direct ironsmelting strongly depends on the utilisation of off-gas. It is shown that if off-gas is not utilised efficiently, the fuel efficiency of the direct ironsmelting process is enhanced strongly by increasing heat transfer efficiency and post-combustion ratio. Otherwise, when the off-gas is utilised efficiently, post-combustion ratio and heat transfer efficiency are less significant for the overall fuel efficiency.  相似文献   

14.
In this paper, we propose an integrated system, consisting of a heliostat field, a steam cycle, an organic Rankine cycle (ORC) and an electrolyzer for hydrogen production. Some parameters, such as the heliostat field area and the solar flux are varied to investigate their effect on the power output, the rate of hydrogen produced, and energy and exergy efficiencies of the individual systems and the overall system. An optimization study using direct search method is also carried out to obtain the highest energy and exergy efficiencies and rate of hydrogen produced by choosing several independent variables. The results show that the power and rate of hydrogen produced increase with increase in the heliostat field area and the solar flux. The rate of hydrogen produced increases from 0.006 kg/s to 0.063 kg/s with increase in the heliostat field area from 8000 m2 to 50,000 m2. Moreover, when the solar flux is increased from 400 W/m2 to 1200 W/m2, the rate of hydrogen produced increases from 0.005 kg/s to 0.018 kg/s. The optimization study yields maximum energy and exergy efficiencies and the rate of hydrogen produced of 18.74%, 39.55% and 1571 L/s, respectively.  相似文献   

15.
In this study, the first time in the literature, natural zeolite has been employed for photovoltaic thermal (PVT) and experimentally tested as a thermal energy storage material. The main aim of the paper is to introduce natural zeolite as a heat storage material for PVT systems. The PVT systems integrated with phase change materials and natural zeolite were designed, the components of the system were explained, the thermodynamical modelling including the first and second laws was presented, the system performances were evaluated, performance parameters were investigated, energy and exergy efficiencies were determined, and economical analyses of each system were performed. Besides, all results were compared with a conventional PVT system. The average overall energy efficiency values for PVT experiments were 33% for paraffin, 37% for stearic acid, 40% for zeolite, and 32% for conventional PVT systems. The payback period of the PVT system with paraffin, zeolite, stearic acid, and conventional PVT was calculated as 10, 8, 9, and 9 years, respectively. The results show that the natural zeolite is a material with significant potential to be used for heat management in PVT for any meteorological condition.  相似文献   

16.
This study deals with the assessment of the thermodynamic performance of cold thermal storage systems using exergy and energy analyses. Several cases are considered, including some storages which are homogeneous, and others which undergo phase changes. In some cases the storages are stratified. A full cycle of charging, storing and discharging is considered for each case. Four cold thermal storage cases are presented in an illustrative example. The results demonstrate that exergy analysis provides more realistic and accurate assessments of the efficiency and performance of cold thermal storage systems than those given by the more conventional energy analysis. In addition, exergy analysis is conceptually more direct since it treats cold as a valuable commodity. It is concluded that the potential usefulness of exergy analysis in addressing and solving cold thermal storage problems is substantial. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
Energy and exergy analyses of space heating in buildings   总被引:1,自引:0,他引:1  
In the present study, energy and exergy analyses are presented for the whole process of space heating in buildings. This study is based on a pre-design analysis tool, which has been produced during ongoing work for the International Energy Agency (IEA) formed within the Energy Conservation in Buildings and Community Systems Programme (ECBCSP) Annex 37. Throughout this paper, in all of the calculations such as heat losses and gains were taken according to Turkish Standards Institution TSE, which is in accordance with the European Standard TS EN ISO 13789. In the analysis, heating load is taken account but cooling load is neglected and the calculations presented here are done using steady state conditions. The analysis is applied to an office in Izmir with a volume of 720 m3 and a net floor area of 240 m2 as an example of application. Indoor and exterior air temperatures are 20 °C and 0 °C, respectively. It is assumed that the office is heated by a liquid natural gas (LNG) fired conventional boiler, an LNG condensing boiler and an external air–air heat pump. With this study, energy and exergy flows are investigated. Energy and exergy losses in the whole system are quantified and illustrated. The highest efficiency values in terms of energy and exergy were found to be 80.9% for external air–air heat pump and 8.69% for LNG condensing boiler, respectively.  相似文献   

18.
This study deals with the energy and exergy analysis of a molten carbonate fuel cell hybrid system to determine the efficiencies, irreversibilities and performance of the system. The analysis includes the operation of each component of the system by mass, energy and exergy balance equations. A parametric study is performed to examine the effect of varying operating pressure, temperature and current density on the performance of the system. Furthermore, thermodynamic irreversibilities in each component of the system are determined. An overall energy efficiency of 57.4%, exergy efficiency of 56.2%, bottoming cycle energy efficiency of 24.7% and stack energy efficiency of 43.4% are achieved. The results demonstrate that increasing the stack pressure decreases the overpotential losses and, therefore, increases the stack efficiency. However, this increase is limited by the remaining operating conditions and the material selection of the stack. The fuel cell and the other components in which chemical reactions occur, show the highest exergy destruction in this system. The compressor and turbine on the other hand, have the lowest entropy generation and, thus, the lowest exergy destruction.  相似文献   

19.
Energy and exergy analyses are reported of hydrogen production via an ocean thermal energy conversion (OTEC) system coupled with a solar-enhanced proton exchange membrane (PEM) electrolyzer. This system is composed of a turbine, an evaporator, a condenser, a pump, a solar collector and a PEM electrolyzer. Electricity is generated in the turbine, which is used by the PEM electrolyzer to produce hydrogen. A simulation program using Matlab software is developed to model the PEM electrolyzer and OTEC system. The simulation model for the PEM electrolyzer used in this study is validated with experimental data from the literature. The amount of hydrogen produced, the exergy destruction of each component and the overall system, and the exergy efficiency of the system are calculated. To better understand the effect of various parameters on system performance, a parametric analysis is carried out. The energy and exergy efficiencies of the integrated OTEC system are 3.6% and 22.7% respectively, and the exergy efficiency of the PEM electrolyzer is about 56.5% while the amount of hydrogen produced by it is 1.2 kg/h.  相似文献   

20.
Liquid natural gas (LNG) delivered by means of sea-ships is compressed and then evaporated before its introduction to the system of pipelines. The possibilities of the utilization of cryogenic exergy of LNG for electricity production without any additional combustion of any its portion, have been analyzed. Three variants of the plant have been investigated. A cascade system with two working fluids has been analyzed in two first of them. The economic optimization proved that the optimum temperature difference in the LNG evaporation is higher than initially assumed. Therefore, a third variant of the plant has been analyzed, with ethane as a single working fluid. Only the third variant has been analyzed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号