首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
某锅炉在运行期间发生水冷壁管泄漏事故,检查发现数十根管材外壁存在横向裂纹。通过宏观检查、化学成分分析、力学性能测试、金相检验和扫描电镜分析,对锅炉水冷壁管横向裂纹的形成原因进行了分析。结果表明:在壁温波动导致的热疲劳应力和腐蚀气氛的共同作用下,锅炉水冷壁管向火侧管壁发生了腐蚀疲劳开裂,形成了密集的横向裂纹,最终导致水冷壁管泄漏。  相似文献   

2.
船舶用316L不锈钢波纹管发生穿孔泄露,通过宏观分析、化学成分分析、扫描电镜分析、能谱分析和金相检验等方法对波纹管的泄漏原因进行了分析。结果表明:波纹管发生了垢下腐蚀,腐蚀泄漏点集中出现在波纹管底部,主要原因是波纹管在使用过程中注入与排出海水时,波纹管底部凹槽积存海水中的杂质形成积垢,积垢中存在的腐蚀性元素硫和氯,导致波纹管发生垢下腐蚀,直至穿透管壁而泄漏。  相似文献   

3.
某电厂超临界锅炉水冷壁管在运行过程中发生泄漏。通过宏观观察、化学成分分析、金相检验、力学性能试验、扫描电镜及能谱分析等方法对管子的泄漏原因进行了分析。结果表明:水冷壁管对接焊缝中存在结晶裂纹,该结晶裂纹在管内压应力和焊接残余应力的作用下不断扩展,形成穿透管壁的横向裂纹,最终导致水冷壁管泄漏。  相似文献   

4.
316L不锈钢板式换热器使用约半年后频繁出现泄漏事故,通过扫描电镜分析、能谱分析、金相检验、显微硬度检测和有限元模拟分析等方法对泄漏原因进行了分析.结果表明:316L不锈钢板片发生了应力腐蚀开裂,造成泄漏.板片冷加工后产生了较大的残余拉应力且环境中存在Cl-腐蚀介质,导致残余应力较大的波峰和波谷处产生裂纹和腐蚀坑,是造...  相似文献   

5.
采用化学成分分析、金相检验和断口分析等方法,对304L钢D210塔筒体泄漏原因进行了分析。结果表明:D210塔筒体泄漏原因是由于氯离子的存在而产生应力腐蚀开裂所致。由于敏感材料、应力腐蚀环境及应力三个条件共同存在,在一定温度下使其产生应力腐蚀裂纹,裂纹起始于筒体外壁角焊缝处,而后向内壁扩展,最终穿透筒壁,致使该塔筒体在角焊缝处产生破裂泄漏。  相似文献   

6.
某油田钻井公司使用的规格为φ101.6 mm×8.38 mm的G105钻杆先后发生两起管体刺穿失效事故,通过化学成分分析、力学性能测试、金相检验、X射线衍射等方法并结合钻杆的受力状态对钻杆刺穿原因进行了分析。结果表明:钻杆刺穿失效形式为腐蚀疲劳,在钻井液中腐蚀介质作用下,钻杆首先发生氧腐蚀和Cl~-加速腐蚀,使钻杆外表面产生许多腐蚀坑,并于腐蚀坑底部形成应力集中;随后在钻井过程的交变应力作用下,应力集中严重的腐蚀坑底部开始萌生裂纹,裂纹不断疲劳扩展直至穿透管壁;最终在钻杆内钻井液的冲刷作用下发生刺穿失效。  相似文献   

7.
路宝玺 《材料保护》2022,55(3):172-178
某化工企业一省煤器的底部、管程低温进水端的不锈钢换热管管束外壁翅片根部出现裂纹,部分裂纹穿透管壁导致泄漏。通过裂纹断口宏观形貌和SEM形貌分析、金相分析以及介质分析等手段研究泄漏发生原因。试验分析结果表明:裂纹起源于管束外壁翅片根部,为应力腐蚀开裂,腐蚀介质源于壳程烟气含有氯和硫的露点凝液;开裂位置多为烟气流通的死角处,烟气在这些位置几乎处于静止状态,且省煤器装置的进水温度并非恒温,开停车阶段会有低温水流入管程,这些都加剧了烟气露点凝液的形成。进一步分析计算了烟气中硫的最大体积分数为0.01%的工况下的酸露点,并指出应在管程上游位置添加一处恒温装置以避免低温水的流入;其次建议更改省煤器的结构,尽量避免出现烟气流通死角。  相似文献   

8.
采用直读光谱仪、光学显微镜和扫描电子显微镜等分析手段对断裂弹簧进行了失效分析。结果表明,该弹簧断裂性质为腐蚀疲劳断裂。弹簧表面与表面的有机涂层存在一定的间隙,外界的水蒸气和腐蚀性离子会穿透有机涂层,对基体材料造成腐蚀,产生腐蚀坑,形成应力集中点,在交变载荷和腐蚀性介质的共同作用下产生裂纹源,最终发生腐蚀疲劳断裂。  相似文献   

9.
通过宏观检验、化学成分分析、力学性能试验、腐蚀试验、断口分析、能谱分析以及金相检验等手段对某项目6号机组3号高压加热器热交换器换热管发生泄漏的原因进行了分析。结果表明:该热交换器不锈钢管发生泄漏失效主要是因为介质中存在氯和氧元素(启停机凝结水),在遮热板钻孔内壁和失效管外壁之间产生点蚀和缝隙腐蚀,破坏了换热管表面的钝化膜并形成点蚀坑(孔),在热应力、冲击应力和振动应力作用下逐渐萌生微裂纹,最终发生应力腐蚀开裂和振动疲劳开裂,并导致泄漏。  相似文献   

10.
某化工厂中变废锅出口管0Cr18Ni9不锈钢弯头发生泄漏。为查明其失效原因,对泄漏部位内外进行表面检测,发现在焊缝附近出现了大量裂纹。在该区域取样进行化学成分、硬度、金相组织、断口形貌和腐蚀产物分析,确定了弯头产生裂纹的原因是存在组织应力、焊接残余应力以及内部介质中的Cl-共同作用下,发生了沿晶型应力腐蚀开裂。  相似文献   

11.
Leakage at the tube-to-tubesheet joints occurred in a waste heat boiler. The mode and the root cause of the failure were investigated by chemical composition analysis of the tube material, metallographic structure and crack observation, and corrosion product analysis of the damaged tubes, as well as the operation condition examination of the waste heat boiler. Results revealed that failure of the tubes occurred due to the stress corrosion cracking (SCC), which was caused by tensile stress and chloride-buildup in the narrow and long gap between the tube and tubesheet hole. The gap formation was further analyzed by comparison of the minimum expansion pressure from the common formula provided by the manufacturer, with that from finite element method computations. It is found that the minimum expansion pressure used in manufacture is small and cannot eliminate the initial gap. Meanwhile, the enrichment of chloride in the gap was briefly discussed.  相似文献   

12.
采用光学金相、扫描电镜、电子探针成分分析和显微硬度测定等方法分析了双卡簧片非正常断裂的原因。在部分双卡簧片折弯处发现有尖锐凹角并有明显微裂纹,裂纹表面有镍和铜,说明裂纹是在成形加工过程中形成。双卡簧片盛开有时弯角较尖锐并有明显裂纹是导致失效的原因。  相似文献   

13.
应用光学显微镜、扫描电镜和能谱仪等手段对321不锈钢焊接波纹管表面腐蚀物的化学成分、焊缝区域的显微组织、腐蚀裂纹的形态特征等方面进行检验和分析。结果表明,波纹管局部电镀端内壁腐蚀导致漏气失效,即加工应力、焊接残余应力与含Cl^-或含Cl^-和溶解氧的腐蚀性介质的联合作用使波纹管局部电镀端产生了点蚀和应力腐蚀开裂;退火工艺设计的不合理和钎焊工艺控制不恰当使焊缝热影响区敏化而出现了晶间腐蚀。据此提出了降低和避免321不锈钢焊接波纹管因腐蚀而漏气的措施。  相似文献   

14.
20MnTiB钢螺栓断裂失效分析   总被引:2,自引:0,他引:2  
应用扫描电子显微镜、光学显微镜、显微硬度仪和电子探针X射线显微分析仪,对发射架20MnTiB高强度螺栓断裂件的金相组织、显微硬度、断口微观形貌和合金元素分布状态进行了分析。结果表明,断裂螺栓金相组织正常,力学性能符合技术要求;螺栓断裂失效是由于在螺栓根部存在因加工不当产生的初始裂纹,在初始裂纹尖端的应力集中和露天使用环境中水介质的共同作用下,螺栓发生应力腐蚀开裂。应力腐蚀开裂的方式是阳极溶解型。  相似文献   

15.
The coupling of the pre-stressed thermal insulated tubing string broke down inside the steam flooding wells, after the tubing were used in high temperature and high pressure steam for about two years. With further check, it was found that most of the weld joints between the inner and outer tubing also cracked. The failure analysis for the accidents has been carried out by the analysis of chemical composition for the steels, microstructure observation, mechanical property tests, and the investigation of the service environment etc.. The results show that the early damage of the pre-stressed thermal insulated tubing string is mainly induced by the caustic stress corrosion, which can be strengthened by an unstable microstructure of the coupling serviced at high temperature for a long time. Moreover, the high pre-stress design on the thermal insulated pipe for the cyclic steam injection may be not suitable to the situation of steam flooding, which would result in the weld joint cracking.  相似文献   

16.
A global model is proposed in this study to predict prestressed concrete (PC) cracking induced by strand corrosion. The proposed model considers the three stages: micro-crack formations, cover cracking initiation, and crack width growth. The prestress and geometric properties of the strand have been incorporated into the prediction. Six PC beams were designed and accelerated toward corrosion-induced cracking. Observing the strands supported visual evidence of pitting corrosion and crevice corrosion. The effects of corrosion-induced crack on the failure of beams are analyzed. The proposed model is verified by the experimental results and this work presents the effects of parameters on corrosion-induced cracking. The results show that prestress has an adverse effect on corrosion-induced cracking. Prestress leads to a decrease in the critical corrosion loss at the three stages. This decrement becomes more noticeable with increasing cover and decreasing concrete tensile strength, but shows no remarkable changes with an increasing strand diameter and rust expansion ratio.  相似文献   

17.
Stress Corrosion Cracking in High Purity Water of 3½ % NiCrMoV – Quenched and Tempered Steel for Steam Turbine Discs and Shafts In recent years intergranular stress corrosion cracking has occured world-wide in the shrink-fitted discs of low pressure turbine rotors made of low alloy steels. Only in a few cases steam impurities such as NaOH, Na2CO3, Na2SO4, H2S, or NaCl, which initiate SCC, could be found. The stress corrosion cracking behaviour of the turbine disc steel 26 NiCrMoV 14 5 with a yield strength of approx. 850 N/mm2 was examined under special corrosion conditions. Gaseous and other impurities of the water, which lead to higher conductivity can initiate stress corosion cracks and increase the stress corrosion crack velocity insignificant. Stress corrosion crack initiation can be prevented by shifting the pH-value and the free corrosion potential in the region of passivity. Unfavourable crevice conditions must be avoided. Solutions are shown, how to prevent stress corrosion cracking of steam turbine discs.  相似文献   

18.
Sherritt International Corporation experienced corrosion failures with the 316L stainless steel tubing in a high-pressure still condenser employed for ammonia recovery. A detailed failure analysis was conducted on the condenser tubing to determine the mode and the root cause of the failure. The analysis included both optical and scanning electron microscopy (SEM) of the inner and outer surfaces of the tube as well as characterization of the corrosion products using energy-dispersive X-ray spectroscopy (EDX). Results revealed that the corrosion attack was confined to the first ~100 mm of the tubing at the inlet where the tube was connected to the top tubesheet. The tube suffered both external stress-corrosion cracking (SCC) and crevice corrosion from the shell side (water side), and wall thinning of the inner surface (the tube side) due to erosion corrosion. It was evident that failure of one of the tubes occurred due to SCC that penetrated the whole wall thickness and resulted in a leak failure. Some prevention measures are proposed to avoid this type of corrosion attack in the future.  相似文献   

19.
This article highlights briefly the reported failure of critical parts and equipment in gas turbine, heat recovery steam generator, and steam turbine, in addition to the requirements of lifetime predictions for the high-temperature components in the combined cycle power plant (CCPP). For assessing fracture strength of flawed structural components in high-temperature environments, the first and foremost thing observed is to ascertain the reason for cracking. Special considerations are to be given in case of stress corrosion cracking, environmentally assisted cracking or bulk creep damage. Sensitivity analysis has to be performed to identify the influencing material properties and crack sizes on the load-bearing capacity of the structural component. An elastic–plastic criterion is examined by considering the fracture data of center crack tension specimens on several materials.  相似文献   

20.
Abstract— Corrosion fatigue crack growth rates in high strength steel are often increased when a large cathodic polarization is applied. The corrosion fatigue mechanism in this case is generally considered to be due to hydrogen embrittlement. In the present study the crack growth process was carefully monitored by taking replicas from initially smooth specimens of a high strength steel under fully reversed push-pull loading while: (1) exposed to laboratory air, (2) immersed in a 0.6 M sodium chloride (NaCl) solution at open circuit potential (OCP) and (3) with an applied cathodic potential of —1250 mV (SCE). It is shown that the effect of cathodic polarization is dependent on the applied stress level and the nature of the cracking process, which in turn, is related to the sue of the crack. For stress levels at or below the in-air fatigue limit, failure did not occur for cathodically polarised specimens despite the number of loading cycles being 10 times that of the lifetime of identical tests in solution at the open circuit potential. At stress levels above the in-air fatigue limit the reduction in fatigue endurance caused by the presence of the corrosive environment can be partially recovered through cathodic polarization. The role of non-metallic inclusions in the cracking process under various exposure conditions is discussed, and a cracking mechanism is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号