首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Himani Sharma 《Thin solid films》2010,518(23):6915-6920
Enhanced field emission properties and improved crystallinity of titanium (Ti) coated multiwalled carbon nanotubes (MWCNTs), prepared by microwave plasma enhanced chemical vapour deposition have been observed. Ti films of extremely low thicknesses (0.5 nm, 1.0 nm and 1.5 nm) were coated over carbon nanotubes (CNTs) and their field emission behaviour was investigated. The turn on field of Ti coated CNTs was found to be low (~ 0.8 V/μm) as compared to pristine CNTs (~ 1.8 V/μm). The field enhancement factor for Ti coated CNTs was quite large (~ 1.14 × 104) as compared to pristine CNTs (~ 6 × 103). This enhancement in electron emission is attributed to the passivation of defects and improved crystallinity of CNTs. Surface morphological and microstructural studies were carried out to investigate the growth of pristine and Ti coated CNTs. It was observed that Ti nanoclusters adsorb on the edges of MWCNTs and increase their crystallinity. This increase is directly correlated with the thickness of Ti film deposited. Micro Raman spectroscopy confirmed the improved crystallanity of Ti coated CNTs.  相似文献   

2.
Huan-Bin Lian  Kuei-Yi Lee 《Vacuum》2009,84(5):534-536
Zinc oxide (ZnO) nanostructures were grown on vertically aligned carbon nanotubes (CNTs) using thermal chemical vapor deposition (CVD) to enhance the field emission characteristics. The shape of ZnO nanostructure was tapered. Scanning electron microscopy (SEM) image showed the ZnO nanostructures were grown onto CNT surface uniformly. The field electron emission of pristine CNTs and ZnO-coated CNTs were measured. The results showed that ZnO nanostructures grown onto CNTs could improve the field emission characteristics. The ZnO-coated CNTs had a threshold electric field at about 3.1 V/μm at 1.0 mA/cm2. The results demonstrated that the ZnO-coated CNT is an ideal field emitter candidate material. The stability of the field emission current was also tested.  相似文献   

3.
X-ray imaging data obtained from cold cathodes using gallium-doped zinc oxide (GZO)-coated CNT emitters are presented. Multi-walled CNTs were directly grown on conical-type (250 μm-diameter) tungsten-tip substrates at 700 °C via inductively coupled plasma-chemical vapor deposition (ICP-CVD). GZO films were deposited on the grown CNTs at room temperature using a pulsed laser deposition (PLD) technique. Field-emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) were used to monitor the variations in the morphology and microstructure of the CNTs before and after GZO coating. The formation of the GZO layers on the CNTs was confirmed using energy-dispersive X-ray spectroscopy (EDX). The CNT-emitter that was coated with a 10-nm-thick GZO film displayed an excellent performance, such as a maximum emission current of 258 μA (at an applied field of 4 V/μm) and a threshold field of 2.20 V/μm (at an emission current of 1.0 μA). The electric-field emission characteristics of the GZO-coated CNT emitter and of the pristine (i.e., non-coated) CNT emitter were compared, and the images from an X-ray system were obtained by using the GZO-coated CNT emitter as the cold cathode for X-ray generation.  相似文献   

4.
An approach to the preparation of a tip-type of field emitter that is made up of carbon nanotubes (CNTs) coated with amorphous carbon nitride (a-CNx) films is presented for the purpose of enhancing its electron emission property. CNTs were directly grown on nano-sized conical-type tungsten tips via the inductively coupled plasma-chemical vapor deposition system, and a-CNx films were coated on the CNTs using an radio frequency magnetron sputtering system. The morphologies and microstructures of the a-CNx-coated CNTs were analyzed via field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, high-resolution transmission electron microscopy, and x-ray photoelectron spectroscopy. The electron emission properties of the a-CNx/CNT hetero-structures were measured using a high-vacuum field emission measurement system. The best field emission properties, such as a very low turn-on voltage of 500 V and a maximum emission current of 176 μA were achieved for the CNT emitter coated with the 5 nm-thick a-CNx film. In addition, this emitter showed a highly stable behavior in long-term (up to 25 h) electron emission.  相似文献   

5.
Multiwalled carbon nanotubes and carbon nano-filaments were grown using Fe as the main catalyst and Ag as a co-catalyst by microwave plasma enhanced chemical vapour deposition. In this work we demonstrate the growth behaviour of carbon nanotubes (CNTs) grown on pure Fe-film and Ag–Fe films. We find that using Ag film beneath Fe film significantly abate the catalyst–substrate interactions by acting as a barrier layer as well as enhances the nucleation sites for the growth of CNTs due to the limited solubility with Fe and silicon. Scanning electron microscopy and transmission electron microscopy studies were carried out to image the microstructures of the samples. It was observed that the length of Fe catalyzed CNTs was ∼500 nm and Ag–Fe catalyzed CNTs varied from ∼600 nm to 1.7 μm. Micro Raman spectroscopy confirmed the improved crystalline nature of Ag–Fe CNTs. It was found that ID/IG ratio for Fe catalyzed CNTs was ∼1.08 and for Ag–Fe catalyzed CNTs was ∼0.7. The Ag–Fe catalyzed CNTs were found to be less defective as compared to Fe catalyzed CNTs. Field emission measurements using diode configuration, showed that electron emission from Ag–Fe catalyzed CNTs was much stronger as compared to Fe catalyzed CNTs. The threshold field for Ag–Fe catalyzed CNTs was (2.6 V μm−1) smaller as compared to Fe catalyzed CNTs (3.8 V μm−1) and thus shows better emission properties. This enhancement in electron emission mechanism as a result of introduction of Ag underlayer is attributed to the increased emitter sites and improved crystallinity.  相似文献   

6.
Nitrogen-doped carbon nanotube (CNT) films have been synthesized by simple microwave plasma enhanced chemical vapor deposition technique. The morphology and structures were investigated by scanning electron microscopy and high resolution transmission electron microscopy. Morphology of the films was found to be greatly affected by the nature of the substrates. Vertically aligned CNTs were observed on mirror polished Si substrates. On the other hand, randomly oriented flower like morphology of CNTs was found on mechanically polished ones. All the CNTs were found to have bamboo structure with very sharp tips. These films showed very good field emission characteristics with threshold field in the range of 2.65-3.55 V/μm. CNT film with flower like morphology showed lower threshold field as compared to vertically aligned structures. Open graphite edges on the side surface of the bamboo-shaped CNT are suggested to enhance the field emission characteristics which may act as additional emission sites.  相似文献   

7.
Young-Rok Noh 《Thin solid films》2010,519(5):1636-1641
The effects of amorphous carbon nitride (CN) thin films that were coated on carbon nanotubes (CNTs) and their thermal treatment were investigated, in terms of the chemical bonding and morphologies of the CNTs and their field emission properties. CNTs were directly grown on conical tip-type tungsten substrates via the inductively coupled plasma-chemical vapor deposition (ICP-CVD) system, and the CNTs were coated with CN films using the RF magnetron sputtering system. The CN-coated CNTs were thermally treated using the rapid thermal annealing (RTA) system by varying the temperature (300-700 °C). The morphologies, microstructures, and chemical compositions of the CN-coated CNTs were analyzed as a function of the thickness of the CN layers and the RTA temperatures. The field emission properties of the CN/CNT hetero-structured emitters, and the fluctuation and long-term stability of the emission currents were measured and compared with those of the conventional non-coated CNT-emitter. The results showed that the electron emission capability of CNT was noticeably improved by coating a thin CN layer on the surface of the CNT. This was attributed to the low work function and negative electron affinity nature of the CN film. The CN-coated CNT-emitter had a more stable emission characteristic than that of the non-coated one. In addition, the long-term emission stability of the CN-coated emitter was further enhanced by thermal treatment, which was verified by x-ray photoelectron spectroscopy (XPS) analysis.  相似文献   

8.
The optimal carbon nanotube (CNT) bundles with a hexagonal arrangement were synthesized using thermal chemical vapor deposition (TCVD). To enhance the electron field emission characteristics of the pristine CNTs, the zinc oxide (ZnO) nanostructures coated on CNT bundles using another TCVD technique. Transmission electron microscopy (TEM) images showed that the ZnO nanostructures were grown onto the CNT surface uniformly, and the surface morphology of ZnO nanostructures varied with the distance between the CNT bundle and the zinc acetate. The results of field emissions showed that the ZnO nanostructures grown onto the CNTs could improve the electron field emission characteristics. The enhancement of field emission characteristics was attributed to the increase of emission sites formed by the nanostructures of ZnO grown onto the CNT surface, and each ZnO nanostructure could be regarded as an individual field emission site. In addition, ZnO-coated CNT bundles exhibited a good emission uniformity and stable current density. These results demonstrated that ZnO-coated CNTs is a promising field emitter material.  相似文献   

9.
This study uses a low temperature thermal chemical vapor deposition with an applied external magnetic field to grow carbon nanotubes (CNTs) on Ni/Ag-printed glass substrates. A mixture of C2H2 and H2 gas was used for the growth of the CNTs. A Ni catalyst layer was deposited on the Ag-printed glass substrate by pulse electroplating. Scanning electron micrographs as well as the presence of two sharp peaks at 1320 cm−1 (D band) and 1590 cm−1 (G band) in the Raman spectra indicate that the graphitized structure of CNTs synthesized under a magnetic field has higher quality (i.e., a D-band to G-band intensity ratio of 0.303) than CNTs synthesized without a magnetic field. Transmission electron micrographs show a fine Ni catalyst at the tip of the tube for CNTs synthesized under a magnetic field, exhibiting a CNT “tip-growth” model. The synthesis of CNTs in the presence of a magnetic field also generates better field emission properties and better lighting morphology than without a magnetic field.  相似文献   

10.
For improving compatibility with IC processes, this work presents a low temperature process (< 400 °C) to fabricate a small-sized-carbon nanotube (CNT) (< 6 graphene layers) pattern by buffer layer (AlN) and CoCrPtOx catalyst precursor-assisted microwave plasma chemical vapor deposition (MPCVD). Without high temperature heating on the whole specimen, the low temperature process mainly results from selective local activation laser heating (≧ 600 °C) to form the catalyst nanostructures, which are beneficial to low temperature H-plasma treatment to form catalyst nanoparticles for CNT growth. The functions of the buffer layer and the catalyst precursor are to help the heat dissipation and the small-sized CNT formation.  相似文献   

11.
Tellurium nanorods were grown on silicon (111) substrates by thermal evaporation. The synthesized Te nanorods were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), prior to the field emission investigations. The TEM image revealed that the nanorods are needle-like having diameter less than 20 nm and length in the range of 200-400 nm. The selected area electron diffraction (SAED) pattern and high resolution TEM micrographs clearly reveal the crystalline nature of the Te nanorods. The field emission studies were carried out in a planar diode (close proximity) configuration at background pressure of ∼1 × 10−9 mbar. An emission current density of ∼8.5 μA/cm2 has been drawn at an applied field of ∼3.2 V/μm. The Folwer-Nodhiem plot, showed a non-linear behaviour. The high value of field enhancement factor (β ∼ 1 × 104), estimated from the slope of the F-N plot, suggests that the emission is indeed from the nanometric tips of the Te nanorods. The emission current stability studied at the preset value ∼3.5 μA over duration of more than 3 h is found to be very good, suggesting the use of Te nanorods as promising electron source for field emission based micro/nano-electronic devices.  相似文献   

12.
The electron field emission (EFE) properties of silicon nanostructures (SiNSs) coated with ultra-nanocrystalline diamond (UNCD) were characterized. The SiNS, comprising cauliflower-like grainy structure and nanorods, was generated by reaction of a Si substrate with an Au film at 1000 °C, and used as templates to grow UNCD. The UNCD films were deposited by microwave plasma-enhanced chemical vapour deposition (MPECVD) using methane and argon as reaction gases. The UNCD films can be grown on the SiNS with or without ultrasonication pretreatment with diamond particles. The EFE properties of the SiNS were improved by adding an UNCD film. The turn-on field (E0) decreased from 17.6 V/μm for the SiNS to 15.2 V/μm for the UNCD/SiNS, and the emission current density increased from 0.095 to 3.8 mA/cm2 at an electric field of 40 V/μm. Ultrasonication pretreatments of SiNS with diamond particles varied the structure and EFE properties of the UNCD/SiNS. It is shown that the ultrasonication pretreatment degraded the field emission properties of the UNCD/SiNS in this study.  相似文献   

13.
Transparent and conductive carbon nanotubes (CNTs)/polyurethane-urea (PUU) composite films were prepared by solvent evaporation-induced self-assembly (EISA). Pristine CNTs were treated with acids (H2SO4/HNO3 = 3:1, v:v), acylated with thionyl chloride, and purified after filtration. These acylated CNTs (0.05 wt.% in dimethylformamide, DMF) were deposited onto the 3-aminopropyl triethoxysilane (APTES)-modified glass substrate by DMF EISA at 100 °C with the withdrawal rate of 3 cm/h. The CNT layers of 200–400 nm thicknesses were transferred to the PUU films by solution casting or resin transfer molding (RTM) at ambient temperature. Optical transmittances of the composite films were 60–75% at 550 nm wavelength and their sheet resistances were 5.2 × 100–2.4 × 103 kΩ/square, and which varied significantly with type of CNTs and the transferring methods of CNT layers.  相似文献   

14.
Davinder Kaur 《低温学》2005,45(6):455-462
In the present study we report the measurements of microwave surface resistance (Rs) of YBCO thin films on LaAlO3 substrate as a function of temperature, thickness and magnetic field by microstrip resonator technique. The Tc(R = 0) of the films is 90 K and Jc > 106 A/cm2 at 77 K. The microwave surface resistance has been measured for films of various thicknesses. The value of Rs has been found to be initially decreased with increasing film thickness due to increase in number of defects. A minimum microwave surface resistance has been obtained for film thickness of about 300 nm. The increase of Rs with film thickness above 300 nm is possibly due to degradation of the film microstructure as observed with Atomic Force Microscopy. Temperature dependence of surface resistance has been studied for best quality films. The field induced variations of surface resistance are also investigated by applying dc magnetic field perpendicular to stripline structure and surface of the film. A general linear and square field dependence of Rs at low and high value of fields has been observed with critical field value of 0.4 T which confirms the microwave dissipation induced by flux flow in these resonators at 10 GHz frequency. The hysteresis of Rs in dc field observed for field value above critical field shows the higher value of surface resistance in decreasing field than in increasing field which is in agreement with one state critical model and is a characteristic of homogeneous superconductors.  相似文献   

15.
In this paper, thionine was electro-polymerized onto the surface of carbon nanotube (CNT)-modified glassy carbon (GC) to fabricate the polythionine (PTH)/CNT/GC electrode. It was found that the electro-reduction current of nitrite was enhanced greatly at the PTH/CNT/GC electrode. It may be demonstrated that PTH was used as a mediator for electrocatalytic reduction of nitrite, and CNTs as an excellent nanomaterial can improve the electron transfer between the electrode and nitrite. Therefore, based on the synergic effect of PTH and CNTs, the PTH/CNT/GC electrode was employed to detect nitrite, and the high sensitivity of 5.81 μA mM− 1, and the detection limit of 1.4 × 10− 6 M were obtained. Besides, the modified electrode showed an inherent stability, fast response time, and good anti-interference ability. These suggested that the PTH/CNT/GC electrode was favorable and reliable for the detection of nitrite.  相似文献   

16.
Multi-wall Carbon Nanotube (CNT) emitters were tested in a combined diode-RF electron gun. Field emission of the nanotubes was observed at 5-30 MV/m, using a 250 ns FWHM long pulse with a peak voltage of 80-470 kV. The field emission threshold is compatible with that found from previous DC testing. We have extracted from a continuous field emitter up to a nanoCoulomb of charge and measured an emittance of 4 mm mrad with a 2 pC electron beam. The total charge emission during RF operation, using the 1.5 GHz, 2 cell RF structure, was found dependent on its period. RF operation showed that back bombarding electrons with up to 5 MeV did not impair the emission stability of the CNTs.  相似文献   

17.
This paper highlights the changes in micro-structural and field emission properties of vertically aligned carbon nanotubes (VACNTs) via oxygen plasma treatment. We find that exposure of very low power oxygen plasma (6 W) at 13.56 MHz for 15–20 min, opens the tip of vertically aligned CNTs. Scanning electron microscopy and transmission electron microscopy images were used to identify the quality and micro-structural changes of the nanotube morphology and surfaces. Raman spectra showed that the numbers of defects were increased throughout the oxygen plasma treatment process. In addition, the hydrophobic nature of the VACNTs is altered significantly and the contact angle decreases drastically from 110° to 40°. It was observed that the electron field emission (EFE) characteristics are significantly enhanced. The turn-on electric field (ETOE) of CNTs decreased from ∼0.80 V μm−1 (untreated) to ∼0.60 V μm−1 (oxygen treated). We believe that the open ended VACNTs would be immensely valuable for applications such as micro/nanofluidic based filtering elements and display devices.  相似文献   

18.
A nanocomposite of manganese dioxide coated on the carbon nanotubes (MnO2/CNTs) was synthesized by a facile direct redox reaction between potassium permanganate and carbon nanotubes without any other oxidant or reductant addition. The morphology, microstructure and crystalline form of this MnO2/CNT nanocomposite were characterized by scanning electron microscopy (SEM), transition electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The electrochemical properties are characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge (GCD). The results show that the facile prepared MnO2/CNTs nanocomposite shows specific capacitance of 162.2 F g−1 at the current density of 0.2 A g−1 and excellent charge/discharge property with 90% of its specific capacitance kept after 2000 cycles at the current density of 5 A g−1.  相似文献   

19.
Han Eol Lim 《Vacuum》2009,84(5):526-529
We have selectively fabricated carbon nanotubes (CNTs) emitter arrays with a micro mold in capillary (MIMIC) assisted process. The electron emitter growth site was fabricated by resist patterning using the MIMIC process. The pattern was uniformly transferred to the substrate and well aligned CNTs were grown. The emitter produces a turn-on field of 2.7 V/μm with a field emission current of 10 μA/cm2. The electron emission current can be controlled by emitter pattern width and pitch variation.  相似文献   

20.
The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag–Cu–Ti alloy and at 880 °C with a Cu–Sn–Ti–Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 μA was drawn from the brazed nanotubes at an applied electric field of 0.6 V μm−1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号