首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ultrathin composite film containing cationic tetra-pyridine perylene tetracarboxylic acid diimide (TPP-I) and an anionic tetra-sulfuric perylene tetracarboxylic acid diimide (TSP-Na) has been fabricated by the electrostatic layer-by-layer self-assembly technique. UV/Vis spectra showed a continuous and uniform deposition process of TPP-I/TSP-Na. The film structure was characterized by the small-angle X-ray diffraction measurement and atomic force microscopy image. We investigated the third-order nonlinearity of the ultrathin film sample at 532 nm. The film exhibited strong saturable nonlinear absorption. The nonlinear absorption coefficient and refractive index of the film sample are − 5.0 × 10− 7 mW− 1 and − 1.2 × 10− 14 m2W− 1, respectively.  相似文献   

2.
Bi3.25La0.75Ti3O12 (BLT) thin film was prepared on quartz substrates using chemical solution deposition. The sign and magnitude of both real and imaginary parts of third-order nonlinear susceptibility χ(3) of the BLT thin film have been determined by the Z-scan technique performed at 800 nm with a femtosecond laser. The nonlinear refractive index coefficient γ and the nonlinear absorption coefficient β of the BLT thin film are − 1.915 × 10− 12 cm2 / W and − 6.764 × 10− 8 m/W, respectively, the real part and imaginary part of the third-order nonlinear susceptibility χ(3) of the BLT thin film are − 5.81 × 10− 18 m2 / V2 and − 1.31 × 10− 18 m2 / V2, respectively. Both the real and the imaginary parts of the third-order nonlinear susceptibility χ(3) contribute to the nonlinearity of the film. These experimental results show that BLT thin film is a promising material for applications in nonlinear optical devices.  相似文献   

3.
In this work we investigate the third-order optical nonlinearities in CuO films by Z-scan method using a femtosecond laser (800 nm, 50 fs, 200 Hz). Single-phase CuO thin films have been obtained using pulsed laser deposition technique. The structure properties, surface image, optical transmittance and reflectance of the films were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and UV-vis spectroscopy. The Z-scan results show that laser-deposited CuO films exhibit large nonlinear refractive coefficient, n2 = − 3.96 × 10− 17 m2/W, and nonlinear absorption coefficient, β = − 1.69 × 10− 10 m/W, respectively.  相似文献   

4.
The Bi1.5Zn1.0Nb1.5O7 (BZN) thin film has been fabricated on MgO (001) substrate by pulsed laser deposition. The nonlinear optical properties of the BZN film were investigated using Z-scan technique at a wavelength of 532 nm with 25 ps pulse duration. The two-photon absorption coefficient and the nonlinear refractive index of the BZN film were obtained to be 4.2 × 10− 6 cm/W and 1.6 × 10− 10 cm2/W respectively, which are comparable with those of some representative nonlinear optical materials. The large and fast response optical nonlinearities indicated that the BZN film is a promising candidate for future photonics devices.  相似文献   

5.
Bi2.55La0.45TiNbO9 (BLTN-0.45) thin films with layered aurivillius structure were fabricated on fused silica substrates by pulsed laser deposition technique. Their structure, fundamental optical constants, and nonlinear absorption characteristics have been studied. The film exhibits a high transmittance (> 60%) in visible-infrared region. The optical band gap energy was found to be 3.44 eV. The optical constant and thickness of the films were characterized using spectroscopic ellipsometric (SE) method. The nonlinear optical absorption properties of the films were investigated by the single-beam Z-scan method at a wavelength of 800 nm laser with a duration of 80 fs. We obtained the nonlinear absorption coefficient β = 4.64 × 10− 8 m/W. The results show that the BLTN-0.45 thin film is a promising material for applications in absorbing-type optical device.  相似文献   

6.
The third-order nonlinear optical properties of Bi2S3 nanocrystals doped in sodium borosilicate glass are measured by Z-scan technique. The microstructures of the glass are characterized by means of X-ray diffraction, transmission electron microscopy, scanning transmission electron microscopy, energy dispersion X-ray spectra, and high-resolution transmission electron microscopy. The results show that the Bi2S3 nanocrystals ranging from 10 to 30 nm are determined to be of the orthorhombic crystalline phase, and the third-order optical nonlinear refractive index γ, absorption coefficient β, and susceptibility χ(3) of the glass are determined to be 2.56 × 10−16 m2 W−1, 4.13 × 10−10 mW−1, and 1.43 × 10−10 esu, respectively.  相似文献   

7.
Single crystals of bimetallic MnHg(SCN)4 (abbreviated as MMTC) are grown by slow cooling method and the second and third order optical nonlinearities are investigated by Kurtz and Perry powder SHG test and single beam Z-scan technique respectively. The influences of SCN ligand in modifying the NLO properties are discussed and the results are compared with other organometallic crystals. The nonlinear refractive index, absorption coefficient and third order susceptibility are estimated to be −1.88 × 10−11 cm2/W, 8.65 × 10−6 cm/W and 6.58 × 10−9 esu, respectively. The optical absorption of MMTC single crystal was recorded and the corresponding direct band gap is found to be 4.2 eV. The phase matching and laser induced damage threshold studies are also carried out. The FT-IR and photoluminescence spectroscopic techniques were employed to identify the composition and luminescence nature of the crystal.  相似文献   

8.
By performing Z-scan method with a femtosecond laser (800 nm, 50 fs, 1 kHz), we investigated the third-order optical nonlinearities of a cuprous oxide (Cu2O) film. Single-phase Cu2O film deposited on a quartz substrate was obtained using the pulsed laser deposition technique. The structure properties, surface morphology and optical transmission spectrum were characterized by X-ray diffraction, scanning electron microscopy and double beam spectrophotometer, respectively. The Z-scan results show that the Cu2O film exhibits large nonlinear refractive index, n2 = 3 × 10− 3 cm2/GW, while the two-photon absorption coefficient, α2 = 40 cm/GW, is relatively small. It implies that the Cu2O film is a promising candidate for nonlinear photonic devices.  相似文献   

9.
Intense reverse saturable absorption is reported for the first time in solid films of a new organic–polymer nanocomposite, cast by doping Biebrich Scarlet dye in a vinyl polymer host polyvinyl alcohol for various concentrations, as studied employing the Z-scan technique at 442 nm under different peak incident intensities ranging from 9.37 × 102 to 104.18 × 102 W cm−2. The sample also exhibited nonlinear refraction under the experimental conditions. The estimated values of the effective coefficients of nonlinear absorption βeff(0.27 × 10−2 to 45.5 × 10−2 cm W−1) as well as nonlinear refraction n2 (−1.5 × 10−7 to −2.75 × 10−7 cm2 W−1) measured up to the highest reported ones for low power continuous wave excitation. The composite films were characterized as nanoclusters consisting of dye molecules encapsulated between larger molecules of the amorphous polymer and having a low average roughness (≈1 nm) for the surface. These results, together with the simple and flexible processing method for the dye–polymer composite, imply that BS–PVA composite films have promising optical properties as an efficient low threshold nanocomposite material for potential applications in nonlinear optical devices.  相似文献   

10.
Y.H. Wang  J.D. Lu  Y.L. Mao 《Vacuum》2008,82(11):1220-1223
Metal nanocluster composite glass prepared by 250 keV Au ions into silica with dose of 1 × 1017 ions/cm2 has been studied. The microstructural properties of the nanoclusters are characterized by optical absorption spectra and transmission electron microscopy (TEM). Third-order optical properties of the nanoclusters are studied by the Z-scan technique under 1064 nm and 532 nm excitations. The nonlinear refraction index, nonlinear absorption coefficient, and the real and imaginary parts of the third-order nonlinear susceptibility are deduced. The results of the investigation of nonlinear refraction using the off-axis Z-scan configuration are presented and the mechanisms responsible for the nonlinear response are discussed. The third-order nonlinear susceptibility χ(3) of this kind of sample was determined to be 1.6 × 10−7 esu at 532 nm and 1.3 × 10−7 esu at 1064 nm.  相似文献   

11.
The sodium borosilicate glass doped with semimetal Bi nanocrystals is prepared by employing both sol-gel and atmosphere control methods. Microstructures and the third-order optical nonlinearities of the glass are investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), and Z-scan technique. The results show that semimetal Bi nanocrystals in hexagonal crystal system with spherical shape have formed uniformly in the glass, and the size of these nanocrystals is almost less than 40 nm. Furthermore, the third-order optical nonlinear refracitve index γ, absorption coefficient β, and susceptibility χ(3) of the glass are determined to be 9.40 × 10−17 m2/W, 1.25 × 10−9 m/W, and 6.80 × 10−11 esu, respectively.  相似文献   

12.
Single phase Bi1.95La1.05TiNbO9 (LBTN-1.05) thin films with a layered aurivillius structure have been fabricated on fused silica substrates by pulsed laser deposition at 700 °C. The X-ray diffraction pattern revealed that the films are single-phase aurivillius. The band gap, linear refractive index and linear absorption coefficient were obtained by optical transmittance measurements. The film exhibits a high transmittance (> 70%) in visible-infrared region and the dispersion relation of the refractive index vs. wavelength follows the single electronic oscillator model. The nonlinear optical absorption property of the film was determined by the single beam Z-scan method using 800 nm with a duration of 100 fs. A large positive nonlinear absorption coefficient β = 5.95 × 10− 8 m/W was determined experimentally. The results showed that the LBTN-1.05 is a promising material for applications in absorbing-type optical devices.  相似文献   

13.
The paper describes the results obtained on the performance of Mo oxide and mixed W/Mo oxide thin films for possible electrochromic applications. Mo and W/Mo oxide films were deposited on conductive (FTO) glass substrates using sol-gel dip coating method. The films were annealed at 250 °C for 30 min. The structure and morphology of Mo and W/Mo oxide films were examined using XRD, SEM and EDS. XRD results indicate the amorphous nature of the Mo and W/Mo oxide films annealed for 30 min. The CV measurements revealed that the films prepared with 10 wt.% of tungsten exhibit maximum anodic/cathodic diffusion coefficient of 24.99/12.71 × 10−11 cm2/s. The same film exhibits a maximum transmittance variation (ΔT%) of 83.4% at 630 nm and 81.06% at 550 nm with the optical density of 1.00 and 1.13 respectively.  相似文献   

14.
Titania-based ultrathin films were fabricated by layer-by-layer (LbL) assembly of titanium (IV) bis(ammonium lactato) dihydroxide (TALH) and polyelectrolytes. The thickness of the titania monolayer in the LbL films was 4-5 nm, which was consistent with the particle size of TALH in water. The conductivity and the electron mobility of the LbL films reached 10− 8 S cm− 1 and 10− 5 cm2 V− 1 s− 1, respectively. These results suggest that there exist percolation paths for the electron transport in the LbL film. Furthermore, it is demonstrated that photovoltaic properties of the LbL film can serve as an effective electron-transporting and accepting layer.  相似文献   

15.
The structural, optical, and nonlinear optical properties of the manganese nanoparticles prepared by laser ablation in various liquids were investigated using the 532 and 1064 nm, 50 ps laser pulses. The TEM and spectral measurements showed temporal dynamics of size distribution of Mn nanoparticles in solutions. The nonlinear absorption (β = 2 × 10−10 and 4 × 10−11 cm W−1) and positive nonlinear refraction (γ = 8 × 10−15 and 2 × 10−14 cm2 W−1) of picosecond radiation were observed in the Mn colloidal suspensions using the 1064 and 532 nm radiation, respectively  相似文献   

16.
Highly conducting and transparent thin films of tungsten-doped ZnO (ZnO:W) were prepared on glass substrates by direct current (DC) magnetron sputtering at low temperature. The effect of film thickness on the structural, electrical and optical properties of ZnO:W films was investigated. All the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. The electrical resistivity first decreases with film thickness, and then increases with further increase in film thickness. The lowest resistivity achieved was 6.97 × 10−4 Ω cm for a thickness of 332 nm with a Hall mobility of 6.7 cm2 V−1 s−1 and a carrier concentration of 1.35 × 1021 cm−3. However, the average transmittance of the films does not change much with an increase in film thickness, and all the deposited films show a high transmittance of approximately 90% in the visible range.  相似文献   

17.
Ferroelectric Ba(Sn0.15Ti0.85)O3 (BTS) thin films were deposited on LaNiO3-coated silicon substrates via a sol-gel process. Films showed a strong (1 0 0) preferred orientation depending upon annealing temperature and concentration of the precursor solution. The dependence of dielectric and ferroelectric properties on film orientation has been studied. The leakage current density of thin films at 100 kV/cm was 7 × 10−7 A/cm2 and 5 × 10−5 A/cm2 and their capacitor tunability was 54 and 25% at an applied field of 200 kV/cm (measurement frequency of 1 MHz) for the thin films deposited with 0.1 and 0.4 M spin-on solution, respectively. This work clearly reveals the highly promising potential of BTS compared with BST films for application in tunable microwave devices.  相似文献   

18.
The epitaxial growth of ZnO thin films on Al2O3 (0001) substrates have been achieved at a low-substrate temperature of 150 °C using a dc reactive sputtering technique. The structures and crystallographic orientations of ZnO films varying thicknesses on sapphire (0001) were investigated using X-ray diffraction (XRD). We used angle-dependent X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy to examine the variation of local structure. The XRD data showed that the crystallinity of the film is improved as the film thickness increases and the strain is fully released as the film thickness reached about 800 Å. The Zn K-edge XANES spectra of the ZnO films have a strong angle-dependent spectral feature resulting from the preferred c-axis orientation. The wurtzite structure of the ZnO films was explicitly shown by the XRD and EXAFS analysis. The carrier concentration, Hall mobility and resistivity of the 800 Å-thick ZnO film were 1.84 × 1019 cm− 3, 24.62 cm2V− 1s− 1, and 1.38 × 10− 2 Ω cm, respectively.  相似文献   

19.
The increase in the usage of low power CW lasers in various applications needs for the design of optical limiters with low thresholds. The optical limiting properties and nonlinear refractive index (n2 = −2.4189 × 10−8 cm2/W) of transparent organic crystal bis(2-aminopyridinium)-succinate-succinic acid (2APS) single crystal using continuous wave He-Ne laser excitation following Z-scan method have been evaluated. The sample exhibited negative (defocusing) nonlinearity. This thermally induced defocusing nature of 2APS crystal can be used to design the low power optical limiters. As the origin for this nonlinearity is thermal, a complete thermal transport properties such as thermal diffusivity (αs = 5.97 ± 0.03 × 10−3 cm2/s), thermal effusivity (es = 1.94 ± 0.02 × 10−2 J/cm2-K-s1/2), thermal conductivity (ks = (4. 66 ± 0.04) × 10−3 W/cm-K)) and specific heat capacity (Cps = (5.61 ± 0.05) × 10−1 J/g-K) of the material were studied following the photopyro electric (PPE) technique.  相似文献   

20.
Transparent conducting magnesium indium oxide films (MgIn2O4) were deposited on to quartz substrates without a buffer layer at an optimized deposition temperature of 450 °C to achieve high transmittance in the visible spectral range and electrical conductivity in the low temperature region. Magnesium ions are distributed over the tetrahedral and octahedral sites of the inverted spinel structure with preferential orientation along (3 1 1) Miller plane. The possible mechanism that promotes conductivity in this system is the charge transfer between the resident divalent (Mg2+) and trivalent (In3+) cations in addition to the available oxygen vacancies in the lattice. A room temperature electrical conductivity of 1.5 × 10−5 S cm−1 and an average transmittance >75% have been achieved. Hall measurements showed n-type conductivity with electron mobility value 0.95 × 10−2 cm2 V−1 s−1 and carrier concentration 2.7 × 1019 cm−3. Smoothness of the film surface observed through atomic force microscope measurements favors this material for gas sensing and opto-electronic device development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号