首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanostructured polymer-fullerene thin films are among the most prominent materials for application in high efficient polymer solar cells. Specifically, poly(3-hexylthiophene) (P3HT) and fullerene derivatives (PCBM) blends are used as the donor/acceptor materials forming a bulk heterojunction. Although P3HT:PCBM properties have been extensively studied, less light has been set on its nanomechanical properties, which affect the device service life. In this work Atomic Force Acoustic Microscopy (AFAM), Atomic Force Spectroscopy and Nanoindentation were used to study the effect of the fullerene presence and the annealing on the P3HT:PCBM nanomechanical behavior. The P3HT:PCBM thin films were prepared by spin coating on glass substrates and then annealed at 100 °C and 145 °C for 30 min. Large phase separation was identified by optical and Atomic Force Microscopy (AFM) for the annealed samples. Needle-like PCBM crystals were formed and an increase of the polymer crystallinity degree with the increase of the annealing temperature was confirmed by X-ray diffraction. AFAM characterization revealed the presence of aggregates close to stiff PCBM crystals, possibly consisting of amorphous P3HT material. AFM force-distance curves showed a continuous change in stiffness in the vicinity of the PCBM crystals, due to the PCBM depletion near its crystals, and the AFM indentation provided qualitative results about the changes in P3HT nanomechanical response after annealing.  相似文献   

2.
Low cost deposition of large area CuInSe2 (CIS) thin films have been grown on Mo-coated glass substrate by simple and economic stacked elemental layer deposition technique in vacuum. The grown parameters such as concentration of Cu, In and Se elements have been optimized to achieve uniform thin film in vacuum chamber. The as-grown Cu/In/Se stacked layers have been annealed at 200 °C and 350 °C for 1 h in air ambient. The as-grown and annealed films have been further subjected to characterization by X-ray diffraction (XRD), optical absorption, atomic force microscopy (AFM) and I-V measurement techniques. XRD patterns revealed that as-grown Cu/In/Se stacked layers represent amorphous nature while annealed CIS film reproduces nano-polycrystalline nature with chalcopyrite structure. The optical band gap of annealed films increases with respect to air annealing which confirms the reduction of crystallite size. Surface morphology of as-grown Cu/In/Se stacked layers and annealed CIS thin films have been confirmed by AFM images. The electrical measurements show enhancement of conductivity which is useful for solar cell application.  相似文献   

3.
L. Sirghi 《Thin solid films》2009,517(11):3310-7382
Atomic force microscopy (AFM) indentation technique is used for characterization of mechanical properties of fluorocarbon (CFx) thin films obtained from C4F8 gas by plasma enhanced chemical vapour deposition at low r.f. power (5-30 W) and d.c. bias potential (10-80 V). This particular deposition method renders films with good hydrophobic property and high plastic compliance. Commercially available AFM probes with stiff cantilevers (10-20 N/m) and silicon sharpened tips (tip radius < 10 nm) are used for indentations and imaging of the resulted indentation imprints. Force depth curves and imprint characteristics are used for determination of film hardness, elasticity modulus and plasticity index. The measurements show that the decrease of the discharge power results in deposition of films with decreased hardness and stiffness and increased plasticity index. Nanolithography based on AFM indentation is demonstrated on thin films (thickness of 40 nm) with good plastic compliance.  相似文献   

4.
Pure tungsten oxide (WO3) and iron-doped (10 at.%) tungsten oxide (WO3:Fe) nanostructured thin films were prepared using a dual crucible Electron Beam Evaporation (EBE) technique. The films were deposited at room temperature under high vacuum onto glass as well as alumina substrates and post-heat treated at 300 °C for 1 h. Using Raman spectroscopy the as-deposited WO3 and WO3:Fe films were found to be amorphous, however their crystallinity increased after annealing. The estimated surface roughness of the films was similar (of the order of 3 nm) to that determined using Atomic Force Microscopy (AFM). As observed by AFM, the WO3:Fe film appeared to have a more compact surface as compared to the more porous WO3 film. X-ray photoelectron spectroscopy analysis showed that the elemental stoichiometry of the tungsten oxide films was consistent with WO3. A slight difference in optical band gap energies was found between the as-deposited WO3 (3.22 eV) and WO3:Fe (3.12 eV) films. The differences in the band gap energies of the annealed films were significantly higher, having values of 3.12 eV and 2.61 eV for the WO3 and WO3:Fe films respectively. The heat treated films were investigated for gas sensing applications using noise spectroscopy. It was found that doping of Fe to WO3 produced gas selectivity but a reduced gas sensitivity as compared to the WO3 sensor.  相似文献   

5.
Franciszek Krok 《Vacuum》2008,83(4):745-751
InSb(001) surfaces were subjected to 4 keV Ar+ bombardment at oblique angles of incidence with ion fluences in the range of 9.0 × 1013-6.2 × 1017 ions/cm2. The evolution of bombardment induced surface structures and their chemical composition were studied with Atomic Force Microscopy (AFM) and Kelvin Probe Force Microscopy (KPFM) in UHV, and “ex situ” with Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX). Various morphological features, such as small dots, wires and for very high ion fluence ripple-like structures were observed. It was found that both the initial surface crystallographic structure and the ion beam direction influence the developing anisotropic nanostructures on the irradiated surface. It was also found that the time evolution of the nanostructured surface in terms of surface roughness σ, follows a power law σ ∼ tβ. The surface nanostructures (dots and wires), at every stage of their development, are found to have different work functions in comparison to the surrounding InSb substrate. The results indicate that the nanostructures developed on the irradiated InSb surfaces consist of indium.  相似文献   

6.
Thin films of TiO2 doped with vanadium and palladium, prepared by the magnetron sputtering method, were studied by means of X-ray diffraction (XRD), Scanning Electron Microscopy with Energy Disperse Spectrometer (SEM-EDS) and Atomic Force Microscopy (AFM). Investigations have brought important information about microstructure due to dopant incorporation in the TiO2 host lattice. Directly after deposition thin films were XRD-amorphous and SEM investigations did not reveal details on the microstructure. Analysis of the topography of prepared thin films required application of Atomic Force Microscope. The AFM images show that as-deposited sample was dense with grain sizes varied in the range of 5.5 nm-10 nm, that indicated high quality nanocrystalline behavior. Additional annealing results in the formation of three phases in the thin film, e.g. (Ti,V)O2 — solid solution, PdO and metallic inclusions of Pd. SEM-EDS system allowed analysis of the elemental composition, especially the V one, which lines have not been evidenced in the XRD diffraction pattern. EDS maps show homogenous distribution of elements Ti, O, V, Pd in prepared thin films.  相似文献   

7.
In this work Eu-doped TiO2 thin films prepared by reactive magnetron co-sputtering of Ti-Eu metallic target have been studied. The results of photoluminescence (PL) and its correlation with microstructure have been described. Structural properties were examined by X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). XRD studies have shown that thin films consisted of TiO2-anatase and AFM images display their high quality and dense nanocrystalline structure. PL spectra, measured at room temperature, show a dominating strong red luminescence corresponding to 5D0-7F2 transition at ∼ 617 nm and ∼ 623 nm. The evolution of photoluminescence and microstructure of the thin films has been examined as they were additionally annealed in an air ambient.  相似文献   

8.
SrSnO3 thin films were prepared by pulsed laser deposition on amorphous silica and single crystal substrates of R-sapphire, (100)LaAlO3 and (100)SrTiO3. High quality epitaxial (100) oriented films were obtained on LaAlO3 and SrTiO3 while a texture was revealed for films on sapphire deposited at the same deposition temperature of 700 °C. Amorphous films were obtained on silica but a post annealing at 800 °C induced crystallization with a random orientation. The screening of deposition temperature showed epitaxial features on SrTiO3 from 650 °C while no crystallization was observed at 600 °C. The influence of substrate and deposition temperature was confirmed by Scanning Electron Microscopy and Atomic Force Microscopy observations.  相似文献   

9.
Thin films of tin sulfoselenide (SnS0.5Se0.5) have been electrodeposited from an aqueous solution on tin oxide coated glass substrates by potentiostatic technique. XRD pattern of SnS0.5Se0.5 films showed polycrystalline nature and orthorhombic structure. The presence of Sn, S, and Se of the films were confirmed by XPS analysis. All films showed an indirect band gap. Surface morphological studies were carried out using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) analyses. Mott-Schottky plots have been drawn (in the dark condition) to evaluate the semiconductor parameters which confirmed the p-type nature of the films. The photoelectrochemical behavior of the SnS0.5Se0.5 films was studied in the electrolyte containing 0.1 M (FeCl2/FeCl3) + 0.05 M H2SO4 and the results are reported.  相似文献   

10.
Microwave-assisted chemical bath deposition (MACBD) is an emerging route for rapid synthesis of films and nanostructured particles. In this paper we report MACBD of ZnO rod-array films on bare glass substrates from an aqueous bath of tetra ammonium zinc complex. The deposition time is reduced to about 1 min as compared to around 60 min for conventional CBD. X-ray diffraction study shows that as-deposited films are uniaxially out-of-plane textured along the c-axis. Scanning Electron Microscopy reveals that the films consist of elongated elliptical tapered rods of diameters 250 to 350 nm. Atomic Force Microscopy shows that the films consist of about 350 nm grains. The RMS roughness is about 60 nm. The energy band gap is 3.27 eV as estimated from optical data. The films are n-type with electrical conductivity of 1 × 10− 4 S/cm.  相似文献   

11.
Improved thermoelectric performance of highly-oriented nanocrystalline bismuth antimony telluride thin films is described. The thin films are deposited by a flash evaporation method, followed by annealing in hydrogen. By optimizing the annealing conditions, the resulting thin films exhibit almost perfect orientation with the c-axis normal to the substrate, and are composed of nano-sized grains with an average grain size of 150 nm. The in-plane electrical conductivity and Seebeck coefficient were measured at room temperature. The cross-plane thermal conductivity of the thin films was measured by a 3ω method, and the in-plane thermal conductivity was evaluated by using an anisotropic factor of thermal conductivity based on a single crystal bulk alloy with almost the same composition and carrier concentration. The measured cross-plane thermal conductivity is 0.56 W/(m K), and the in-plane thermal conductivity is evaluated to be 1.05 W/(m K). Finally, the in-plane power factor and figure-of-merit, ZT, of the thin films are 35.6 μW/(cm K2) and 1.0 at 300 K, respectively.  相似文献   

12.
TiN and Ti1−xAlxN thin films with different aluminum concentrations (x = 0.35, 0.40, 0.55, 0.64 and 0.81) were synthesized by reactive magnetron co-sputtering technique. The structure, surface morphology and optical properties were examined using Grazing Incidence X-ray Diffraction (GIXRD), Atomic Force Microscopy (AFM), Raman spectroscopy and spectroscopic ellipsometry, respectively. The structure of the films were found to be of rocksalt type (NaCl) for x = 0.0–0.64 and X-ray amorphous for x = 0.81. AFM topographies show continuous mound like structure for the films of x between 0.0 and 0.64, whereas the film with x = 0.81 showed smooth surface with fine grains. Micro-Raman spectroscopic studies indicate structural phase separation of AlN from TiAlN matrix for x > 0.40. Ti1−xAlxN has the tendency for decomposition with the increase of Al concentration whereas c-TiN and hcp-AlN are stable mostly. The optical studies carried out by spectroscopic ellipsometry measurements showed a change from metallic to insulating behavior with the increase in x. These films are found to be an insulator beyond x = 0.81.  相似文献   

13.
S. Nagar 《Thin solid films》2010,518(16):4542-4452
Successful p-type ZnO thin films have been reported by depositing it on semi insulating GaAs substrates by Pulsed Laser Deposition (PLD) technique. The PLD samples were subsequently subjected to Rapid Thermal Annealing to achieve the required doped ZnO. X-ray Diffraction, Atomic Force Microscopy and Van der Pauw Hall measurements were performed on the annealed samples and compared with as-deposited ones. The XRD results confirm growth of <002> ZnO along with better crystallinity for the annealed sample. The AFM results reveal that the thin films deposited were highly uniform having very low roughness values. Van der Pauw Hall measurements show a transition from n-type conductivity for as-deposited sample to p-type for annealed samples. The hole concentration and Hall mobility measured were reported to be as high as 4.475 × 1020 cm− 3 and 39.73 cm2/V-sec respectively. These are probably the highest reported values to date and are encouraging from the point of successful fabrication of efficient ZnO-based optoelectronics devices like LED, laser, photodiodes, etc. in the near future.  相似文献   

14.
In this work, we report the preparation of lanthanum-modified lead zirconate titanate (PLZT) thin films by RF magnetron sputtering on platinized silicon (Pt/Ti/SiO2/Si) substrate. Sputtering was done in pure argon at 100 W RF power without external substrate heating. X-ray diffraction studies were performed on the films to study the effect of post-deposition furnace annealing temperature and time on the perovskite phase formation of PLZT. Annealing at 650 °C for 2 h was found to be optimum for the preparation of PLZT films in pure perovskite phase. The effect of different annealing conditions on surface morphology of the films was examined using AFM. The dielectric, ferroelectric and electrical properties of these films were also investigated in detail as a function of different annealing conditions. The pure perovskite film exhibits better properties than the other films which have some fraction of unwanted pyrochlore phase. The remanent polarization for pure perovskite film was found to be ∼29 μC/cm2 which is almost double compared to the films having mixed phases. The dc resistivity of the pure perovskite film was found to be 7.7 × 1010 Ω cm at the electric field of ∼80 kV/cm.  相似文献   

15.
Gas-phase phosphorous and boron doping of hydrogenated nanocrystalline thin films deposited by HWCVD at a substrate temperature of 150 °C on flexible-plastic (polyethylene naphthalate, polyimide) and rigid-glass substrates is reported. The influence of the substrate, hydrogen dilution, dopant concentration and film thickness on the structural and electrical properties of the films was investigated. The dark conductivity of B- and P-doped films (σd = 2.8 S/cm and 4.7 S/cm, respectively) deposited on plastic was found to be somewhat higher than that found in similar films deposited on glass. n- and p-type films with thickness below ∼ 50 nm have values of crystalline fraction, activation energy and dark conductivity typical of doped hydrogenated amorphous silicon. This effect is observed both on glass and on plastic substrates.  相似文献   

16.
The growth and thermal conductivity of InAs quantum dot (QD) stacks embedded in GaInAs matrix with AlAs compensating layers deposited on (1 1 3)B InP substrate are presented. The effect of the strain compensating AlAs layer is demonstrated through Atomic Force Microscopy (AFM) and X-ray diffraction structural analysis. The thermal conductivity (2.7 W/m K at 300 K) measured by the 3ω method reveals to be clearly reduced in comparison with a bulk InGaAs layer (5 W/m K). In addition, the thermal conductivity measurements of S doped InP substrates and the SiN insulating layer used in the 3ω method in the 20–200 °C range are also presented. An empirical law is proposed for the S doped InP substrate, which slightly differs from previously presented results.  相似文献   

17.
Stoichiometric powder of CuInSe2 (CIS) was prepared from molten stoichiometric quantities of the elements. The structure analyzed by X-ray diffraction powder (XRD), shows mainly the chalcopyrite phase. CIS polycrystalline thin films deposited from this powder have been grown on glass substrates in vacuum by thermal evaporation method. The structural and electrical properties of both as-deposited and annealed films were studied using X-ray diffraction and dark conductivity measurements respectively. As-prepared films at room temperature showed an amorphous structure. However, the chalcopyrite structure with (112) preferential orientation was observed after annealing in vacuum at 400 °C during 30 min. The influence of the annealing process on the dark conductivity of the films was also discussed.  相似文献   

18.
The plasma polymer thin films were deposited on Si(100) substrate by PECVD (plasma enhanced chemical vapor deposition) method. Liquid cyclohexene was used as single organic precursor. It was heated up to 60 °C and bubbled up by hydrogen gas, which flow rate was 50 sccm (standard cubic centimeters per min). Deposition temperature was room temperature. Plasma was ignited by a radio frequency (RF; 13.56 MHz) of 10 W.As-deposited plasma polymer thin films were treated by e-beam of 300 keV with various adsorption radiation doses. The plasma polymer films, which were treated by high energy e-beam (HEEB), were investigated by FT-IR (Fourier Transform Infrared), XPS (X-ray Photoelectron Spectroscopy), AFM (Atomic Force Microscopy), and the water contact angles.From IR spectra, the intensity of OH functional group is increased by increasing electron dose rate. XPS results also show that the intensity of O1s peak is increased by increasing electron dose rate. C1s peak shows that oxygen bonded at carbon site. The water contact angles are decreased by increasing electron dose rate. From the AFM analysis, we observed the formation of λ-DNA (deoxyribonucleic acid) array on plasma polymer film, which was treated by HEEB with 14 kGy of adsorption radiation dose.  相似文献   

19.
K. Khojier 《Vacuum》2010,84(6):770-777
Ti films of different thickness ranging from 12.3 to 246.2 nm were deposited, using resistive heat method and post-annealed at different temperatures with a flow of 5 cm3 s−1 oxygen. The nano-structures of the films were obtained using X-ray diffraction (XRD) and atomic force microscopy (AFM). The results showed an initial reduction of the grain size at 373 K annealing temperature and increase of the grain size at higher temperatures. The cause of this was due to the reaction of oxygen with Ti atoms which breaks up the Ti grains and hence needle-like features form. The enhancement of activation processes at higher temperatures results in larger grains. The analysis of XRD in conjunction with AFM images showed that those films containing (004) line of anatase phase and sub-oxide phases of titanium oxide also show two types of grains in the AFM images. The resistivity of the film increased with annealing temperature, which is due to competition between increased diffusion rate and the increased reaction rate of oxygen with Ti atoms. The Hall coefficient RH and the mobility μ decreased with increasing film thickness at all annealing temperatures, while RH increases and μ decreases with increasing the annealing temperature. The carrier concentration increased with film thickness and decreased with annealing temperature. The impedance spectroscopy showed that all films have a pure RC behaviour, where the magnitude of R depends on the annealing temperature and film thickness. The apparent activation energies Ea, obtained from three different methods, namely σ, RH and grain size showed good agreement within 0.30-0.46 eV for the range of film thickness examined in this work. It was found that films with thickness less than 70 nm can be recognized as Ti-oxide films while thicker films are only surface-oxidised Ti films.  相似文献   

20.
Thin films of Fe0.01Ge1−xSbx (x = 0.01, 0.05, 0.10) alloys were prepared by thermal evaporation technique. Characterization of these thin films was done using High Resolution X-Ray Diffraction (HRXRD), Two Probe Resistivity measurement, Atomic Force Microscopy (AFM) and Magnetic Force Microscopy (MFM) respectively. The resistivity results show that activation energy increases with increase in Sb concentration. The low temperature conduction is explained by Variable Range-Hopping mechanism, which fits very well for the whole temperature range. The Arrhenius plot reveals semiconducting behavior. The AFM images of alloys show almost uniform particle size distribution with average particle size varying from 35 to 60 nm with increase in Sb concentration. The MFM images corresponding to the AFM images show the films exhibiting ferromagnetic interactions at room temperature. The average magnetic domain sizes were observed to increase from 43 to 68 nm with increase in Sb concentration from x = 0.01 to x = 0.10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号