首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
介绍了基于14位输出的智能磁敏元件 MLX90363制成的转角传感器,它利用STM32F103C8T6微控制器相应的电路作为数据处理模块,将 MLX90363芯片采集的双路角度数据读出,通过一定的算法处理,实现±720°范围的多圈角度计算,并利用CAN总线将采集到的数据输出.设计了转角传感器基本方案,包括传感器的系统结构、硬件电路和软件程序.给出了利用两路磁敏元件采集的转角信号计算绝对转角的算法,以及利用 CAN总线进行软件中断的方法,实现回正零点的设置.该传感器成本低、精确度高,可以应用于ESP和EPS系统中为汽车方向盘转角提供精确角度测量.  相似文献   

2.
针对中风病人康复训练,设计了一种具有力反馈功能的方向盘,该方向盘是中风病人虚拟驾驶康复训练系统的关键设备。主要介绍了力反馈方向盘的工作原理和该力反馈康复训练方向盘的硬件设计,通过C8051F320的USB接口采集方向盘上面的光电编码器的位置信息和扭矩传感器的力矩信息,并通过USB接口控制电机输出力反馈,帮助病人进行康复训练,该力反馈康复训练方向盘具有良好的社会前景。  相似文献   

3.
作为汽车动力学稳定性控制系统的重要组成部分,汽车转向角传感器可以用来检测方向盘的转动角度,而方向盘的转动角度是为汽车实现转向幅度提供依据,使汽车按照驾驶员的转向意图行驶,其精度对于行车安全具有重要意义;设计了一种汽车方向盘角度传感器转角检测系统,并利用该系统检测一款角度传感器转角值测量精度;检测系统通过CAN总线驱动角度传感器转动并读回角度传感器的转角数据,再利用Matlab对数据进行分析处理;经过多次实验,实验结果符合要求,证明了该系统能有效解决汽车方向盘角度传感器转角测试问题。  相似文献   

4.
针对目前场(厂)内机动车方向盘转向参数测量仪装夹机构复杂、测量结果误差大的问题,提出一种基于多传感器技术的转向参数测量仪方法。通过加速度传感器、地磁计对陀螺仪角速度进行补偿,采用四元数融合算法对9轴MEMS传感器采样数据进行融合,修正因方向盘倾角对转向角测量结果的影响。通过设计转向参数测量仪硬件平台验证算法的可行性,实验结果表明融合算法能够提高转向角的精度。  相似文献   

5.
基于X线测量脊柱形态的放射性、不易携带性等特点,设计出基于姿态传感器的非X线的脊柱形态测量技术.分析了姿态传感器的姿态角在人体脊柱测量过程中的转换关系,以及设计出多Cobb角的测量的实现方法.基于姿态传感器的脊柱形态测量设备是通过单片机读取姿态传感器的俯仰角和偏航角后经过算法计算出Cobb角,采用LCD显示采集到的脊柱棘突姿态信息和反映脊柱形态的Cobb角数据.通过实验验证分析基于姿态传感器测量技术的测量误差在±2°内,而且满足可重复测量要求,测量仪的可靠性大于0.8.  相似文献   

6.
基于光电和倾角检测的全天候太阳跟踪传感器设计   总被引:1,自引:0,他引:1  
为提高双轴太阳跟踪系统的跟踪精度,设计了一种全天候太阳跟踪传感器。该传感器主要由外壳、接口电缆、9个光电探头、倾角传感器SCA100T—D02及相应电路组成。晴天时通过光电探头检测太阳的位置,阴雨天气时通过SCA100T—D02实时反馈太阳能电池板转动后的倾角,以修正和消除太阳跟踪系统进行视日运动轨迹跟踪时的机械误差。通过理论分析计算,确定了光敏电阻器在探头中的安装位置,传感器可感知高度角在-88.83°~88.83°范围内的太阳入射光线。经试验测试,传感器的倾角检测的最大相对误差为3.8%,能满足实际应用要求。  相似文献   

7.
针对小型无人机三维空间内姿态解算的问题,提出了一种仅利用偏振光传感器进行全姿态角的解算方法.利用偏振光传感器测量的偏振方位角,及通过观测位置和观测时间计算得到的太阳方位角,可以求得当前的航向角.利用太阳矢量在导航坐标系和载体坐标系中的投影,通过解算姿态方程解算出当前的俯仰角与横滚角,实现全姿态角的解算.通过仿真实验证明了该方法的有效性,解算出的姿态角误差在1°以内,能够有效地满足小型无人机的需求,为无人机导航提供一种全新的导航方法.  相似文献   

8.
进行了基于压电传感器的两船间横向液货补给的错位角测量装置设计.首先,建立了横向补给过程中几何量测量的原理模型;然后,结合需求对核心测量部件进行了数学计算分析和参数设计;最后,通过电路系统设计实现了两船间错位角的测量和显示.实验结果表明:基于压电传感器的错位角测量装置实现了测量范围为-30°~+30°,工作温度为-25~+65℃,环境湿度为95% RH以下,测量精度为0.1 °的实时测量要求,该装置具有很高的温度稳定性、抗干扰性和重复性.  相似文献   

9.
针对非线性自抗扰控制技术设计的系统、线性自抗扰技术设计的系统受到噪声影响,导致信号传输受到阻碍,出现偏航角跟踪控制结果精准度低的问题,提出了基于核相关滤波的无人机偏航角跟踪控制系统设计;在系统总体架构支持下,采用STM32F407型号主控芯片,保证无人机控制系统稳定性;在方向盘下安装有转向角传感器,为ESP电子控制单元提供方向盘;使用频率为2.4 GHz遥控器接收机生成具有不同脉冲宽度PWM信号,通过控制旋翼偏航控制器,推动旋翼在不同角度指令下旋转;利用核相关滤波器过滤目标图像,通过滤波器的输运来估计目标运动位置,并确定地面参考坐标系与无人机机体坐标系,构成无人机在空间中六个自由度,由此设计偏航角跟踪控制软件流程,跟踪控制无人机偏航角;由实验结果可知,该系统滚转角与实际值轨迹一致,误差为0;俯仰角与实际值轨迹有偏差,误差为0.05°,为无人机向不同方向精准飞行提供系统支持.  相似文献   

10.
单轴红外姿态测量系统在测量小型无人机姿态角时存在盲区,通过增加一组与原轴线相垂直的红外传感器,形成双轴姿态测量系统,对盲区进行补偿。两组红外传感器一定有一组位于倾角可测区域,通过测试目标轴的输出温差的大小,判断位于可测区域的轴线,可实现对目标轴姿态角的解算。首次采用数字式输出红外热电堆传感器设计实现了180°无盲区的姿态角测量模块,经过测试,其静态误差小于2°。  相似文献   

11.
多圈绝对角度传感器是机器人、汽车电子核心部件之一.TLE5012B角度传感器基于集成巨磁阻(iGMR)技术,可检测封装磁场表面360°的变化,实现角度的非接触式测量.提出了三齿轮机械结构与TLE5012B角度传感器相结合的分段函数算法,实现对转轴旋转位置高精度、大量程的非接触式检测,完成角度传感器检测量程与检测精度的解耦.实验证明:利用该机械结构的分段函数算法所设计的绝对角度传感器可以实现检测量程可调,检测精度达到0.5°.  相似文献   

12.
张恒  杨鹏  张高巍  孙昊 《计算机仿真》2020,37(3):134-138,143
针对电动汽车转向时的稳定性问题,以双轮毂电机电动汽车为研究对象,利用线性二自由度车辆模型得到理想参数,提出了基于横摆角速度的终端滑模横摆力矩控制。同时利用Simulink搭建了整车七自由度的车辆模型,通过低速和高速两种情况来进行算法验证。仿真结果表明,上述算法相对于垂直载荷力矩控制和传统滑模控制而言,能够有效的减少目标参数趋于稳定的时间,抗干扰能力强。力矩分配之后输出力矩作用于轮毂电机,便可以有效的保证车辆运行转向时的安全性和稳定性。  相似文献   

13.
研制了一种无触点的十字形两维集成垂直霍尔器件 ,它对平行于芯片表面的磁场敏感。当与被测转角θ的物件轴向相连的径向永久磁铁转动时 ,传感器给出了相对于被测角度的两种信号电压 ,通过接口电路和PC机组成的非接触式测量系统把信号转换为转角θ。测试结果表明该角度传感器及其测量系统的测量精度在 0°~ 36 0°范围内可达± 1°  相似文献   

14.
设计了一种基于无位置传感器的永磁同步电动机(PMSM)反演控制器.该控制器包括基于定子电流检测的速度观测器与反演速度控制器.速度观测器代替位置传感器实现转速的在线估计;反演控制器的设计确保速度控制系统具有快速的转速跟踪与转矩响应.通过设计全局Lyapunov函数保证了控制系统的稳定性.仿真和试验结果表明:基于速度观测器...  相似文献   

15.
马妍  宋爱国 《测控技术》2014,33(1):74-78
研究了一种基于STM32的力反馈型康复机器人控制系统的设计。采用位置传感器和扭矩传感器检测康复机器人机械臂的位置信息以及机械臂与患者的相互作用力信息,将位置信息与作用力信息送入基于ARM-M3内核的STM32微控制器进行处理,从而实现康复机器人中驱动电机的控制。该系统硬件处理电路包括了扭矩信号的信号调理单元、微控制器控制单元、电机驱动单元以及USB接口单元。经实验验证,本系统可以实现康复机器人的平稳安全的控制。  相似文献   

16.
The paper presents a lateral motion stability control method for electric vehicle (EV) driven by four in-wheel motors, which considers time-variable vehicle speed and uncertain disturbance caused by external factors. First, an EV lateral motion dynamics tracking control model is presented. Then in order to deal with the uncertain disturbance in the lateral motion model, an almost disturbance decoupling method using sampled-data state feedback is proposed. Third, a sampled-data state feedback controller is constructed based on the state feedback domination approach. The proposed controller can attenuate the disturbances’ effect on the output to an arbitrary degree of accuracy. Simulation and test results under different vehicle speeds show the effectiveness of the control method.  相似文献   

17.
The time-optimal problem is considered for the orientation of a satellite in the plane of a circular orbit and bringing it to the desirable angular position. The constraint on the control torque module is considered as the main parameter of the problem. It turned out that even in the case when the admissible control torque exceeds the gravitational moment in magnitude, additional switching curves corresponding to the relay control with two switchings are possible in the phase plane. As a result, a simple numerical algorithm is proposed, and with its help for each terminal angular position the threshold absolute control value is found at which the indicated switching curves are infinitesimal. Their coordinates in the phase plane are found in the most well-known case of the gravitationally stable terminal angular position. A suboptimal control law, which does not need a numerical calculation of the switching curve, is offered.  相似文献   

18.
位置传感器的引入,使得开关磁阻电机(SRM)结构复杂,可靠性降低,研究了非导通相注入脉冲的转子位置估计方法,该方法不受电机控制方式,以及绕组电流超越饱和阈值的影响.针对响应脉冲电流产生的扰动转矩,设计了基于脉冲注入法的开关磁阻电机转矩优化系统.通过转速环将转矩差转换为给定转矩,建立合理的转矩分配机制,得到给定相转矩,并将直接瞬时转矩控制(DITC)与电流闭环控制相结合使转矩准确吻合给定相转矩,从而实现电机的循环控制,有效减小了脉冲电流产生干扰转矩对转矩波动的影响.建模仿真验证了方法的可行性:对基于脉冲注入的无位置传感器开关磁阻电机的转矩脉动具有良好的抑制效果.  相似文献   

19.
基于D-FNN的开关磁阻无位置传感器的研究   总被引:1,自引:0,他引:1  
提出了一种基于扩展径向基函数(RBF)神经网络的动态模糊神经网络(D-FNN)的开关磁阻电机无位置传感器控制的新方法。动态模糊神经网络系统以在线采样的相绕组的电流和磁链为输入,以转子位置角度为输出,从而建立起电流和磁链、转子位置角度的非线性映射关系;训练完成后,用D-FNN输出结果取代位置传感器角度信号,实现电机无位置传感器运行。仿真和实验结果表明:由D-FNN获得的角度信号和由位置传感器获得的角度信号相比误差小,电机能够准确换相,且输出转矩波动小,转速曲线平滑,电机在无位置传感器下运行良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号