首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we are concerned with adsorption, structure, morphology, and dynamic properties of food dairy proteins (β-casein, caseinate, and whey protein isolate (WPI)) and water-insoluble lipids (monopalmitin and monoolein) at the air-water and oil-water interfaces. Combined surface chemistry (surface film balance and dynamic tensiometry) and microscopy (Brewster angle microscopy (BAM)) techniques have been used to determine the adsorption, structure, morphology, relative film thickness, relaxation phenomena, and dilatational rheological characteristics of emulsifiers (proteins and lipids) at fluid-fluid interfaces, including the effect of temperature. The derived information shows that protein and lipid type and temperature affect the interfacial characteristics. The nature of emulsifier (protein or lipid) interactions at the interface has an important role in their physicochemical characteristics. Important functional differences have been established between proteins and lipids, and between globular (WPI) and disordered (β-casein and caseinate) proteins.  相似文献   

2.
Protein‐polysaccharide (PS) interactions find many applications in food engineering and new foam formulations. In this article, we have studied the effect of anionic nonsurface active PSs [sodium alginate (SA) and lambda‐carrageenan (λ‐C)] in aqueous solution on interfacial and foaming characteristics of milk whey proteins [whey protein concentrate (WPC) and whey protein isolate (WPI)]. Whey protein concentration (1.0% wt), temperature (20°C), pH (7), and ionic strength (0.05 M) of the aqueous media were kept constant, while PS influence was evaluated within a 0.0–1.0% wt concentration range. The dynamic properties (dynamics of adsorption and surface dilatational properties) of WPC/PS and WPI/PS adsorbed films were considered in order to correlate the foaming characteristics of the biopolymer mixed systems. Foaming characteristics of the biopolymer mixed systems depended on the PS relative concentration in the aqueous phase and on the whey protein‐PS interactions in solution and at the air–water interface. Dynamic surface properties of the adsorbed films at short adsorption time had a significant effect on foaming capacity. For a particular system, the overall foam destabilization (foam half‐life time) and the individual destabilization processes (drainage, disproportionation, and bubble coalescence) depend on the nature of the PS, its relative bulk concentration, and whey protein‐PS interactions in the vicinity of the air–water interface. The viscosity of the aqueous phase has an effect on the rate of drainage while the rate of disproportionation/collapse is more dependent on the interfacial characteristics of the adsorbed film. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

3.
Surfactant protein C (SP-C) exists in α-helical and β-sheet conformation. The influence of these conformations on the surface behavior of spread layers containing dipalmytoyl phosphatodylcholine and the surfactant protein B was investigated. The β-sheet conformation of SP-C, which is formed during the preparation procedure at high lipid/protein concentrations, was confirmed by using circular dichroism (CD) and FTIR spectroscopy. Using a captive bubble device, the surface pressure/area isotherms, the surface dilatational elasticity and viscosity, and the main relaxation times of a transient stress relaxation were determined. Surface layers containing SP-C in β-sheet have no protein squeeze-out plateau. The surface dilatational elasticity is increased, which leads to a film of low compressibility. The relaxation times were increased by more than one order of magnitude, and the decays after surface compression and dilatation did not approach each other. Therefore, the surface behavior of layers containing SP-C in β-sheets remarkably differs from those containing SP-C in α-helical conformation. The presence of β–SP-C prevents the film from meeting the function of a pulmonary surfactant layer.  相似文献   

4.
5.
王玮  李楷  郝帅  宫敬 《化工学报》2013,64(8):2947-2955
界面活性分子在油水界面的吸附将改变其界面性质,如界面张力、界面流变性质,从而影响乳状液体系的稳定。通过吸附模型较为准确地描述活性分子在界面上的吸附行为,是定量描述油水界面性质的有效方法之一。以Span80为界面活性物质,模拟油、去离子水为实验介质,研究了低于及超过临界胶束浓度(实验中确定为0.45 mmol·L-1)下界面张力及界面扩张模量的影响特性,表现为界面扩张模量随Span浓度的增加而先增大后减小的趋势。将描述纯扩散弛豫的Lucassen-van den Tempel模型,同Langmuir、Frumkin、reorientation和rigorous reorientation(严格重排)吸附模型相结合,用于预测含活性分子油水界面张力及扩张流变的性质;结果表明,结合严格重排吸附模型能够准确地预测油水界面张力,界面扩张模量、相角、弹性和黏性模量随浓度、频率的变化趋势。  相似文献   

6.
The influence of liquid surface tension on the bubble formation from both rigid and flexible orifice has been investigated. The liquid phases under test are aqueous solutions with butanol or surfactants (cationic, non-ionic and anionic); static and dynamic measurements of liquid surface tension have been performed to characterise them. This study shows that the effect of surface tension on the bubbles generated cannot be analysed only in terms of the static surface tension, but also depends on whether the bubbles are generated from a rigid orifice or from a flexible orifice. The kinetics of adsorption and diffusion of the solute molecules towards the bubble interface have to be taken into account insofar as their time scales are comparable to those of the bubble formation phenomenon.  相似文献   

7.
利用动态表面张力研究方法,对不同质量比的烷基苯磺酸胺盐和椰子油二乙醇酰胺进了行研究,并利用2种数学模型对动态吸附数据进行分析,结果表明将吸附过程分成不同时区的数学模型能更好的体现表面活性剂的动态吸附过程,为表面活性剂在实际应用中的表现提供预测和参考。  相似文献   

8.
The interfacial activity of asphaltenes, naphthenic acids, and naphthenates has been amply studied in the literature, as they are involved in the formation and stabilization of bitumen and heavy crude oil emulsions. While most of the literature evaluates one component at a time, in this work these bitumen components were separated one at a time from Athabasca bitumen, and the surface activity of the resulting fraction was evaluated as a function of pH, solvent aromaticity (heptane/toluene mixtures, known as heptol, at volume ratios 50/50 and 80/20), and temperature for selected systems. The interfacial activity was evaluated in two ways: via dynamic interfacial tension during adsorption on a bitumen drop of constant volume, and via dynamic interfacial tension during drop volume cycling. The adsorption data were interpreted using a model that combined multicomponent adsorption kinetics inspired by Langmuir–Freundlich kinetics with the Fainerman surface equation of state. The volume cycling experiments were interpreted using the compression relaxation model, which segregates adsorption/relaxation effects from elastic phenomena at interfaces. Overall, the adsorption data confirmed that naphthenic acids are the fastest adsorbing species that tend to dominate the interface, but that asphaltenes adsorb, almost irreversibly, at longer time scales and likely forming a sublayer previously proposed in the literature. The dilatational elasticity of the interface seems to be highly influenced by that asphaltene sublayer, which softens at high pH at room temperature, or at 80 °C independently of the pH of the system.  相似文献   

9.
In this way,after experimental measurement of interfacial tension,different models including mono-exponential decay,dynamic adsorption models and empirical equation are used to correlate this time-dependent behavior of interfacial tension(IFT).During the modeling approach,the induction,adsorption,equilibrium,and meso-equilibrium times as well as diffusivity of surface active components known as natural surfactant including asphaltene and resin from crude oil to the interface are obtained.In addition,the surface excess concentration of surface active components at the interface and Gibbs adsorption isotherm are utilized to analyze the measured dynamic IFTs.Finally,the mechanisms of crude oil/aqueous solution IFT including(a)the activity of surface-active components and(b)surface excess concentration of them at fluid/fluid interface are proposed and discussed in details.  相似文献   

10.
The dynamic interfacial properties and dilational rheology of gemini sulfonate surfactant (SGS) and its mixtures with quaternary ammonium bromides (DTAB, CTAB) at the air–water interface were investigated using drop shape analysis. Results suggest that the adsorption process of these surfactants is diffusion-controlled at dilute concentrations, whereas the adsorption mechanism gradually shifts to a mixed kinetic-diffusion control with increasing surfactant concentration. The mixed surfactant system possesses the best surface activity when the molar ratios of SGS/DTAB and SGS/CTAB mixtures are 9:10. The formation of catanionic complexes shields the electrostatic repulsion between surfactant molecules and lowers the electrostatic adsorption barrier. Therefore, SGS/DTAB and SGS/CTAB mixtures exhibit higher adsorption rates than either component alone. The effects of oscillating frequency and surfactant concentration on the surface dilational properties of SGS, DTAB, CTAB, SGS/DTAB, and SGS/CTAB mixtures were also determined. As the oscillating frequency increases, the dilational elasticity of these surfactants gradually increases. The dilational elasticity peaks at a certain concentration, which is less than the critical micelle concentration (CMC). Results show that the dilational elasticity of SGS/DTAB and SGS/CTAB mixtures is higher than that of either component, resulting from the formation of a denser monomolecular adsorption layer at the air–water interface. Our study provides a basis for understanding the interaction mechanism of catanionic surfactant mixtures containing Gemini surfactant at the air–water interface.  相似文献   

11.
Using equilibrium and dynamic surface tension measurements, we have studied the effect of the addition of poly(sodium 4-styrenesulfonate) (PSS), sodium chloride, and 1,4,7,10,13,16-hexaoxyacyclooctadecane (18-crown-6) on the surface properties of sodium bis(2-ethyl hexyl sulfosuccinate) (AOT). The addition of PSS or NaCl weakly increases the maximum packing of AOT, whereas the presence of 18-crown-6 slightly decreases the maximum surface coverage. The surfactant adsorption kinetics on the interface is a diffusion-controlled process. The two asymptotic solutions at long times and at short times to the classic Ward Tordai equation were used to fit dynamic results. At long times there is evidence of the existence of an electrostatic barrier at high surfactant concentration when using pure AOT and AOT mixed with PSS. In binary mixtures of AOT with sodium chloride or 18-crown-6, the electrostatic barrier is not observed over the surfactant concentration range studied.  相似文献   

12.
For the diffusion-controlled adsorption, the expression of dynamic surface adsorption P(t) was ob- tained by solving the diffusion equation. Two cases, i.e. the short and long time limits, were mainly discussed in this paper. From the measured dynamic surface tension of aqueous surfactant sodium dodecyl sulfate (SDS) solutions at 25 ℃, the adsorption kinetics of SDS at air/solution interface was studied. It was proved that for both of the short and long time limits, the adsorption process of SDS was controlled by diffusion.  相似文献   

13.
Experimental studies were performed on the kinetics of the three‐phase contact formation and bubble attachment to a quartz surface in solutions of a cationic surfactant of various concentrations. By tuning the distance between the single‐bubble formation point and the quartz surface immersed in the solution, the influence of the state of the dynamic adsorption layer over a rising bubble on the mechanism of rupture of a wetting film formed was elucidated. Based on the unique methodology, allowing precise control over the initial degree of adsorption coverage at the detaching bubble, new evidence was found confirming the electrostatic character of the wetting film rupture in cationic surfactant solutions of low concentrations.  相似文献   

14.
Coalescence of air bubbles and stability of foams in aqueous solutions of Tween 20, 40, 60 and 80 are reported in this work. Adsorption of the surfactants at air–water interface was studied by measuring the surface tension of the surfactant solutions. The surface tension profiles were fitted using a surface equation of state derived from the Gibbs and Langmuir adsorption equations. The critical micelle concentration and surface tension at this concentration were determined. The effect of surfactant concentration on coalescence of air bubbles at flat air–water interface was studied. The role of steric force on coalescence time was investigated. The coalescence time distributions were fitted by the stochastic model. The mean values of the distributions were compared with the predictions of seven film-drainage models. Stability of foams was analyzed by the Ross–Miles test. The initial and residual foam heights were measured at different surfactant concentrations. The stability of foams was compared with the coalescence time of the bubbles.  相似文献   

15.
赵建国 《应用化工》2007,36(8):773-775
用三乙醇胺和苄基氯合成三乙醇苄基氯化铵(TBAC),最大气泡法测定了不同浓度和不同温度下TBAC苯溶液中的表面张力,考察了浓度、温度对溶液表面张力的影响,研究了TBAC在气-液界面上的吸附。利用G ibbs吸附公式,讨论了气-液界面上TBAC的最大吸附量Γm,最小分子截面积Am in以及吸附常数k等参数。结果表明,TBAC在苯中有较好的表面活性,吸附规律符合Langmu ir吸附等温式。用热力学方程计算出标准吸附自由能△Ga°d、标准吸附焓变△Ha°d和标准吸附熵变△Sa°d。  相似文献   

16.
使用高速相机研究了表面张力变化对含气泡液体射流破裂过程的影响。通过改变表面活性剂浓度获得了不同表面张力的液体射流。实验发现当液体射流速度保持不变时,减小液体表面张力会增加射流破裂长度。表面活性剂一方面降低了液体动态表面张力,减小了射流表面不稳定波的增长率,增大了射流破裂长度;另一方面表面活性剂在射流表面的非均匀分布会产生Marangoni应力,促使液体向射流变形区运动,从而推迟了射流破裂的发生,增大了射流破裂长度。通过理论分析得到了液体射流破裂长度表达式。发现射流内部气泡会显著缩短含表面活性剂射流的破裂长度。通过气泡扰动射流速度和吸附表面活性剂的分析,揭示了内部气泡对含表面活性剂射流破裂的影响规律。  相似文献   

17.
To examine the effect of protein adsorption on the fat–water interface on the surface composition of spray-dried particles, whey, hydrolyzed whey, and soy protein isolate emulsions were prepared at three different protein to fat ratios of 1:1, 1:5, and 1:10 and spray dried. Non-hydrolyzed whey protein isolate (WPI) and the more hydrolyzed whey protein solutions at 20.2% degree of hydrolysis (DH) had significantly lower surface tension values with fat than without fat. The correlation between the reduction of surface tension value of an emulsion and the increase in protein surface composition of powder particles was observed for WPI and HWP406 but was not observed for the other protein isolate types. It was clear that the spray-dried emulsions had fat as the dominant component on the surface of the powder particles and that the amount of protein on the surface became severely depressed at higher fat addition levels. In terms of its powder morphology, the unique powder structures such as the indentations and folds usually found on the surface of protein containing powders were not evident because they were compromised by the presence of high surface fat. The powder with higher surface fat had more crumpled particle structures and dimpled surfaces.  相似文献   

18.
The effect of protein displacement at the interface by a secondary emulsifier on the oxidative stability of sodium caseinate-stabilized tuna oil-in-water emulsion systems was determined. Emulsions were prepared with a selection of anionic and non-ionic emulsifiers and stored at both 25 and 50 °C with no added prooxidant, and at 4 °C in the presence of ferrous sulfate. The progress of oxidation during storage was monitored through solid phase microextraction headspace analysis. Metal ion catalyzed oxidation was enhanced for the emulsions stabilized with an anionic emulsifier in comparison to emulsion systems stabilized with non-ionic emulsifiers and sodium caseinate alone. The increased oxidation observed for the emulsion with the anionic surfactant is due to electrostatic interactions between divalent metal ions and the negatively charged surfactant at the oil-water interface. The sodium caseinate interfacial layer had little prooxidant effect at the droplet surface, most likely due to the ability of free protein molecules in solution to sequester metal ions, which may have provided some protection against oxidative deterioration.  相似文献   

19.
The equilibrium and dynamic surface tension of three sulfosuccinate surfactants at the air/aqueous solution interface were investigated. Wilhelmy plate method was used to determine critical micelle concentration (CMC) and the equilibrium surface tension (γ eq). The dynamic surface tensions in the range 10–100 s were measured by maximum bubble pressure method. The well-known Ward–Tordai equation was employed to analyze the adsorption of the sulfosuccinate surfactants. The parameters and effective diffusion coefficients (D eff) of dynamic surface tension have been calculated and analyzed. The equilibrium surface tension results showed that disodium laureth (3) sulfosuccinate (AEO3-SS), disodium laureth (6) sulfosuccinate (AEO6-SS) and disodium alkyl ethoxy glucoside sulfosuccinate (AEG-SS) are surfactants possessing strong surface activity, adsorbing to the interface rapidly and their γ eq values were in the range 25–32 mN/m. CMC of the three surfactants increases with the number of hydrophilic groups and AEO3-SS has the lowest CMC. According to the values of some dynamic surface tension parameters, AEG-SS is the most hydrophilic surfactant of them and AEO3-SS is energetically more favorable to adsorb to the interface than the others. According to Ward–Tordai equation, the D eff values were calculated, the adsorption mechanism was diffusion controlled at short times and toward the end good evidence was found for an activated-diffusion mechanism with an energy barrier.  相似文献   

20.
龚志明  王瑞祥  邢美波 《化工学报》2020,71(4):1754-1761
针对全氟烷基季铵碘化物(Le-134)、全氟烷基磷酸酯(Le-107)和全氟烷基聚醚(Le-180)三种表面活性剂水溶液的平衡态表面张力和吸附动力特性进行了研究。临界胶束浓度的大小关系为Le-180 (15×10-6) -6) -6);饱和吸附量Гmax大小关系为 Le-107 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号