首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative DNA damage by a model Cr(V) complex, [CrO(ehba)2]-, with and without added H2O2, was investigated for the formation of base and sugar products derived from C1', C4', and C5' hydrogen atom abstraction mechanisms. EPR studies with 5,5-dimethylpyrroline N-oxide (DMPO) have shown that Cr(V)-ehba alone can oxidize the spin trap via a direct chromium pathway, whereas reactions of Cr(V)-ehba in the presence of H2O2 generated the hydroxyl radical. Direct (or metal-centered) Cr(V)-ehba oxidation of single-stranded (ss) and double-stranded (ds) calf thymus DNA demonstrated the formation of thiobarbituric acid-reactive species (TBARS) and glycolic acid in an O2-dependent manner, consistent with abstraction of the C4' H atom. A minor C1' H atom abstraction mechanism was also observed for direct Cr(V) oxidation of DNA, but no C5' H atom abstraction product was observed. Direct Cr(V) oxidation of ss- and ds-DNA also caused the release of all four nucleic acid bases with a preference for the pyrimidines cytosine and thymine in ds-DNA, but no base release preference was observed in ss-DNA. This base release was O2-independent and could not be accounted for by the H atom abstraction mechanisms in this study. Reaction of Cr(V)-ehba with H2O2 and DNA yielded products consistent with all three DNA oxidation pathways measured, namely, C1', C4', and C5' H atom abstractions. Cr(V)-ehba and H2O2 also mediated a nonpreferential release of DNA bases with the exception of the oxidatively sensitive purine, guanine. Direct and H2O2-induced Cr(V) DNA oxidation had opposing substrate preferences, with direct Cr(V) oxidation favoring ss-DNA while H2O2-induced Cr(V) oxidative damage favored ds-DNA. These results may help explain the carcinogenic mechanism of chromium(VI) and serve to highlight the differences and similarities in DNA oxidation between high-valent chromium and oxygen-based radicals.  相似文献   

2.
Using CD spectroscopy, guanine tetraplex formation was studied with short DNA fragments in which cytosine residues were systematically added to runs of guanine either at the 5' or 3' ends. Potassium cations induced the G-tetraplex more easily with fragments having the guanine run at the 5' end, which is just an opposite tendency to what was reported for (G+T) oligonucleotides. However, the present (G+C) fragments simultaneously adopted other conformers that complicated the analysis. We demonstrate that repeated freezing/thawing, performed at low ionic strength, is a suitable method to exclusively stabilize the tetraplex in the (G+C) DNA fragments. In contrast to KCl, the repeated freeze/thaw cycles better stabilized the tetraplex with fragments having the guanine run on the 3' end. The tendency of guanine blocks to generate the tetraplex destabilized the d(G5).d(C5) duplex whose strands dissociated, giving rise to a stable tetraplex of (dG5) and single-stranded (dC5). In contrast to d(G3C3) and d(G5C5), repeated freezing/thawing induced the tetraplex even with the self-complementary d(C3G3) or d(C5G5); hence the latter oligonucleotides preferred the tetraplex to the apparently very stable duplex. The tetraplexes only included guanine blocks while the 5' end cytosines interfered neither with the tetraplex formation nor the tetraplex structure.  相似文献   

3.
The PvuII restriction endonuclease is a homodimer that recognizes and cleaves the DNA sequence 5'-CAGCTG-3' in double-stranded DNA, and the structure of this enzyme has been reported. In the wild-type enzyme, Asp34 interacts with the internal guanine of the recognition sequence on the minor groove side. The Asp34 codon was altered to specify Gly (D34G), and in vitro studies have revealed that the D34G protein has lost binding specificity for the central G.C base-pairs, and that it cuts the canonical sequence with 10(-4)-fold reduced activity as compared to the wild-type enzyme. We have now determined the structure at 1.59 A resolution of the D34G PvuII endonuclease complexed with a 12 bp duplex deoxyoligonucleotide containing the cognate sequence. The D34G alteration results in several structural changes relative to wild-type protein/DNA complexes. First, the sugar moiety of the internal guanine changes from a C2'-endo to C3'-endo pucker while that of the 3' guanine changes from C3'-endo to C2'-endo pucker. Second, the axial rise between the internal G.C base-pairs is reduced while that between the G.C and flanking base-pairs is expanded. Third, two distinct monomeric active sites are observed that we refer to as being "primed" and "unprimed" for phosphodiester bond cleavage. The primed and unprimed sites differ in the conformation of the Asp58 side-chain, and in the absence from unprimed sites of four networked water molecules. These water molecules, present in the primed site, have been implicated in the catalytic mechanism of this and other endonucleases; some of them can be replaced by the Mg2+ necessary for cleavage. Taken together, these structural changes imply that the Asp34 side-chains from the two subunits maintain a distinct conformation of its DNA substrate, properly situating the target backbone phosphates and indirectly manipulating the active sites. This provides some insight into how recognition of the specific DNA sequence is linked to catalysis by the highly specific restriction endonucleases, and reveals one way in which the structural conformation of the DNA is modulated coordinately with that of the PvuII protein.  相似文献   

4.
An N-acetyl-2-aminofluorene (AAF) modified deoxyoligonucleotide duplex, d(C1-C2-A3-C4-[AAF-G5]-C6-A7-C8-C9).d(G10-G11-T12-G13-C14-++ +G15-T16-G17-G18), was studied by one- and two-dimensional NMR spectroscopy. Eight of the nine complementary nucleotides form Watson-Crick base pairs, as shown by NOEs between the guanine imino proton and cytosine amino protons for G.C base pairs or by an NOE between the thymine imino proton and adenine H2 proton for A.T base pairs. The AAF-G5 and C14 bases show no evidence of complementary hydrogen bond formation to each other. The AAF-G5 base adopts a syn conformation, as indicated by NOEs between the G5 imino proton and the A3-H3' and A3-H2'/H2" protons and by NOEs between the fluorene-H1 proton of AAF and the G5-H1' or C6-H1' proton. The NOEs from the C4-H6 proton to C4 sugar protons are weak, and thus the glycosidic torsion angle in this nucleotide is not well defined by these NMR data. The remaining bases are in the anti conformation, as depicted by the relative magnitude of the H8/H6 to H2' NOEs when compared to the H8/H6 to H1' NOEs. The three base pairs on each end of the duplex exhibit NOEs characteristic of right-handed B-form DNA. Distance restraints obtained from NOESY data recorded at 32 degrees C using a 100-ms mixing time were used in conformational searches by molecular mechanics energy minimization studies. The final, unrestrained, minimum-energy conformation was then used as input for an unrestrained molecular dynamics simulation. Chemical exchange cross peaks are observed, and thus the AAF-9-mer exists in more than a single conformation on the NMR time scale. The NMR data, however, indicate the presence of a predominant conformation (> or = 70%). The structure of the predominant conformation of the AAF-9-mer shows stacking of the fluorene moiety on an adjacent base pair, exhibiting features of the base-displacement [Grunberger, D., Nelson, J. H., et al. (1970) Proc. Natl. Acad. Sci. U.S.A. 66, 488-494] and insertion-denaturation models [Fuchs, R.P.P., & Daune, M. (1971) FEBS Lett. 14, 206-208], while the distal ring of the fluorene moiety protrudes into the minor groove.  相似文献   

5.
The photochemistry of Pt2(pop)44- with nucleic acids has been studied using radiolabeled oligomers of DNA and RNA and high-resolution electrophoresis (pop is P2O5H22-). Photolysis of Pt2(pop)44- with duplex DNA produces an even cleavage ladder and relatively little enhancement of cleavage upon treatment with piperidine. In contrast, the cleavage pattern is far less regular with single-stranded DNA, and there is a large enhancement in cleavage upon treatment with piperidine. Accordingly, photolysis of Pt2(pop)44- with the DNA hairpin 5'-d[ATCCTATTTATAGGAT] produces a much larger piperidine enhancement at the loop and end nucleotides than in the stem. There is an additional piperidine enhancement that occurs selectively at guanine residues either in RNA or in DNA at low Mg2+ concentrations that is attributed to outer-sphere electron transfer on the basis of the known excited-state redox potentials of Pt2(pop)44- and the expected oxidative chemistry of guanine. The extent of guanine oxidation is higher compared to the extent of sugar oxidation at low Mg2+ concentrations, which can be attributed to a shallower distance dependence for electron transfer compared to that for atom transfer. The effects of Mg2+ and piperidine or aniline treatment were examined on stem-loop structures of DNA and RNA and gave partial images of the expected secondary structures.  相似文献   

6.
Our interest in improving the efficiency of targeted scission reagents has prompted us to study the influence of ring substituents on the nuclease activity of 1,10-phenanthroline-copper conjugated to oligonucleotides and DNA-binding proteins. Since methyl substitution at all but the 2 and 9 positions enhances the copper-dependent chemical nuclease activity of 1,10-phenanthroline, we have compared the activity of conjugates prepared from 5-(aminomethyl)-1,10-phenanthroline (MOP) to those of conjugates prepared from 5-amino-1,10-phenanthroline (amino-OP). Tethering MOP derivatives to the Escherichia coli Fis protein enhances DNA scission several-fold at the weaker cleavage sites initially observed with conjugates prepared from amino-OP. However, scission efficiency is not increased at the stronger cleavage sites, or when scission is targeted to single-stranded DNA by a complementary oligonucleotide. These results are consistent with a change in the rate-determining step for cleavage associated with the differential accessibility of the DNA-bound coordination complex to solvent and reductant. Although the free bis cuprous complex of 2,9-dimethyl-1,10-phenanthroline (neocuproine) is redox-inactive, an oligonucleotide tethered to neocuproine through C5 of the phenanthroline ring efficiently cleaves a complementary DNA sequence. These results establish that the nucleolytic species in targeted scission is the 1:1 cuprous complex and suggest that the oxidative reaction proceeds through a copper-oxo intermediate rather than a metal-coordinated peroxy species. However, substituents at the 2 and 9 positions of the ligand will often hinder close approach of the phenanthroline-copper moiety to the oxidatively sensitive ribose as shown by the preference of the oligonucleotide-targeted chimera for cleavage of single-stranded regions and the failure of neocuproine-DNA-binding protein chimeras and a C2-tethered chimera to cleave DNA.  相似文献   

7.
8.
The solution secondary structure of the Oxytricha nova telomeric 3' overhang, d(T4G4)2, has been investigated by Raman spectroscopy, hydrogen-deuterium exchange kinetics and gel electrophoresis. The electrophoretic mobility of d(T4G4)2 in non-denaturing gels indicates a highly compact conformation, consistent with a hairpin secondary structure. Raman markers show that the d(T4G4)2 hairpin contains equal numbers of C2'-endo/syn and C2'-endo/anti deoxyguanosine conformers, as well as G.G base-pairs of the Hoogsteen type. The hydrogen-deuterium exchange kinetics of d(T4G4)2, monitored by time-resolved Raman spectroscopy, reveal two kinetically distinct classes of guanine imino (N1H) protons. The more slowly exchanging fraction (kN1H(1)=4.6x10(-3) min-1), which represents 50% of N1H groups, is attributed to Hoogsteen-paired residues. The more rapidly exchanging fraction (kN1H(2)>/=0.3 min-1) is attributable to solvent-exposed residues. Raman dynamic probe of the kinetics of guanine C8H-->C8(2)H exchange in d(T4G4)2 reveals modest retardation vis-à-vis dGMP, which rules out quadruplex formation by the telomeric repeat and confirms an ordered secondary structure consistent with a Hoogsteen-paired hairpin. Similar Raman, hydrogen-isotope exchange and electrophoretic mobility experiments on the related telomeric model, dT6(T4G4)2, also reveal a hairpin stabilized by Hoogsteen G.G pairs. Presence of the 5' thymidine tail preceding the Oxytricha telomeric repeat has no apparent effect on the hairpin secondary structure. We propose a molecular model for the hairpin conformation of the Oxytricha nova telomeric repeat and consider its possible roles in mechanisms of telomeric DNA interaction in vitro and telomere function in vivo.  相似文献   

9.
We found that single-stranded DNA oligomers containing a 7, 8-dihydro-8-oxoguanine (8-oxo-G) residue have high reactivity toward KMnO4; the oxidation of 8-oxo-G induces damage to the neighboring nucleotide residues. This paper describes the novel reaction in detail, including experiments that demonstrate the mechanism involved in the induction of DNA damage. The results using DNAs of various base compositions indicated that damaged G, T and C (but not A) sites caused strand scissions after hot piperidine treatment and that the damage around the 8-oxo-G occurred at G sites in both single and double strands with high frequency. The latter substrates were less sensitive to damage. Further, kinetic studies of the KMnO4reaction of single-stranded oligomers suggested that thereactivity of the DNA bases at the site 5'-adjacent to the 8-oxo-G was in the order G >A >T, C. This preference correlates with the electron donating abilities of the bases. In addition, we found that the DNA damage at the G site, which was connected with the 8-oxo-G by a long abasic chain, was inhibited in the above order by the addition of dG, dA or dC. On the other hand, the damage reactions proceeded even after the addition of scavengers for active oxygen species. This study suggests the involvement of a redox process in the unique DNA damage initiated by the oxidation of the 8-oxo-G.  相似文献   

10.
In this article the structural analysis of the persistently bound form of the carcinogen N-acetyl-2-aminofluorene (AAF) to rat liver DNA in vivo is described. This compound appears to result from the formation of a covalent bond between carbon-3 of the aromatic ring and the amino group of guanine. Experimental evidence from three different approaches had led to the identification of the structure of the persistently DNA-bound AAF moiety. First, [3-3H, 9-14C]N-acetoxy-AAF was reacted with DNA in vitro. As reported previously, a minor product was isolated from enzymatic digests of the reacted DNA, which had chemical and chromatographic properties identical to those of the persistent--AAF moiety in DNA in vivo. The ratio 3H/14C of this product had diminished to the same extent as 3-CH3S-AAF resulting from the reaction of methionine with [o-3H, 9-14C]N-acetoxy-AAF. Secondly, reaction of [9-14C]N-acetoxy-AAF with DNA, which was tritiated in the C-8 positions of the purines, did not result in removal of tritium in the persistent fraction obtained after acid hydrolysis, thus excluding substitution at C-8 and N-7 of guanine. Finally , by reacting N-OSO3-K-AAF with deoxyguanosine in dimethylsulfoxide-triethylamine, a compound could be isolated, which was identified as 3-(deoxyguanosin-N2-yl)-AAF based on its NMR spectrum and on the mass spectrum of the corresponding guanine derivative obtained after removing deoxyribose by acid hydrolysis. This compound appeared to be identical with the persistently bound form present in DNA hydrolysates from rat liver after injection of [2'-3H]N-hydroxy-AAF.  相似文献   

11.
This paper reports the crystal structures of free acid and ammonium salt of adenosine 2'-monophosphate (2'-AMP). 2'-AMP crystallizes in the hexagonal space group P6(5)22 with a = 9.530(3) A, c = 73.422(2) A, and Z= 12. 2'-AMP.NH4 crystallizes in the trigonal space group P3(1) with a = 9.003(2) A, c = 34.743(2) A and Z= 6. Both the structures were solved by direct methods and refined by full matrix least- squares method to final R factors of 0.080 and 0.038 for 2'-AMP and 2'-AMP.NH4 respectively. The adenine bases of both the structures are in syn conformation contrasting with the anti geometry in 3'-AMP, 5'-AMP and the enzyme bound state. Ribose moiety of 2'-AMP is in C2' -endo conformation. However, the ribose moieties of both the nucleotide molecules display C2'-endo-C3'-exo twist conformation in 2'- AMP.NH4 structure. Both structures demonstrate g+ conformation about C4' -C5' bond. 2'-AMP and one of the nucleotide molecules of 2'-AMP.NH4 are protonated at N1 and the ammonium ion is involved in a bifurcated hydrogen bond with O3' B and O3A atoms. A characteristic feature of both the structures is the intramolecular O5' -N3 hydrogen bond. Our crystallographic results on 2'-AMP corroborates the earlier conclusion that the enzyme-bound state is not the lowest energy state of this nucleotide. 2' -AMP displays base-ribose 04' stacking not seen in the 2'-AMP.NH4 structure. Theoretical and experimental studies on 2'-, 3'- and 5'-AMP structures have been discussed.  相似文献   

12.
Intracellular metabolism of the carcinogen chromate [Cr(VI)] produces the oxidative stress and oxidative DNA damage associated with its genotoxicity. Such oxidative stress has previously been measured by fluorescence using oxidant-sensitive dyes and attributed to the formation of reactive oxygen species (ROS). However, metabolism of Cr(VI) also produces Cr(IV) and Cr(V) which can directly damage biological macromolecules without forming ROS. We used the high-valence chromium species, bis(2-ethyl-2-hydroxybutyrato)oxochromate(V) [Cr(V)-EHBA], to test whether high-valence chromium would also react with the oxidant-sensitive dyes 2',7'-dichlorofluorescin (DCFH) and dihydrorhodamine (DHR). Cr(V)-EHBA caused both dyes to fluoresce over a wide dynamic range and under conditions which indicated that Cr(V) had reacted directly with both dyes without first forming a diffusible radical species. Dimethylthiourea (DMTU) and ethanol did not affect Cr(V)-induced fluorescence in vitro or Cr(VI)-induced fluorescence in A549 cells. Under the same conditions, ethanol and DMTU increased the extent of hydrogen peroxide-induced fluorescence. As chromium-induced fluorescence was unaffected by radical scavengers and was qualitatively different from hydrogen peroxide-induced fluorescence, we conclude that DCF and R123 fluorescence in chromate-treated A549 cells is a qualitative and cumulative measure of intracellular Cr(V) formation and not ROS.  相似文献   

13.
The isolation and characterization of the main stable diamagnetic products formed upon exposure of frozen aqueous solutions of 2'-deoxycytidine at 196 K to 60 Co gamma-rays are described. The initial formation of the radical pi-anion of 2'-deoxycytidine is strongly indicated by the formation of 5,6-dihydro-2'-deoxyuridine and 5,6-dihydrouracil. The formation of radical centres within the sugar moiety is clearly implied. As reported previously, the observed formation of 5',6-cyclo-5,6-dihydro-2'-deoxyuridine indicates hydrogen atom abstraction at the C5' position. The release of cytosine, and 2-deoxy-D-ribono-1,4-lactone may result from deprotonation of a pristine radical pi-cation at C1' or from direct hydrogen abstraction at this position. In general, the structures of the final products correlate well with those of the primary radicals identified from ESR studies by other workers.  相似文献   

14.
The solution structure of d(CCATCAFBGATCC).d(GGATCAGATGG), containing the 8,9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B1 adduct, was refined using molecular dynamics restrained by NOE data obtained from 1H NMR. The modified guanosine was positioned opposite cytosine, while the aflatoxin moiety was positioned opposite adenosine in the complementary strand. Sequential 1H NOEs were interrupted between C5 and AFBG6, but intrastrand NOEs were traced through the aflatoxin moiety, via H6a of aflatoxin and H8 of the modified guanine. Opposite the lesion, the NOE between A16 H1' and G17 H8 was weak. A total of 43 NOEs were observed between DNA protons and aflatoxin protons. Molecular dynamics calculations restrained with 259 experimental and empirical distances, and using sp2 hybridization at AFBG6 N7, refined structures with pairwise rms differences < 0.85 A, excluding terminal base pairs. Relaxation matrix calculations yielded a sixth root rms difference between refined structures and NOE intensity data of 7.3 x 10(-2). The aflatoxin moiety intercalated on the 5'-face of the modified guanine. The extra adenine A16 was inserted between base pair AFBG6.C15 and the aflatoxin moiety. A 36 degree bending between the plane of base pair AFBG6.C15 and the plane of the aflatoxin moiety was predicted. The aflatoxin moiety stacked below the top domain of the oligodeoxynucleotide, which consisted of base pairs C1.G21, C2.G20, A3.T19, T4.A18, and C5.G17. The bottom domain consisted of base pairs AFBG6.C15, A7.T14, T8.A13, C9.G12, and C10.G11. The average winding angle between base pair C5.G17, the intercalated aflatoxin moiety, A16, and base pair AFBG6.C15 was reduced to 10 degrees. The preponderance of base pair substitutions in the aflatoxin B1 mutational spectrum, particularly G-->T transversions, suggests that the stability of this modified oligodeoxynucleotide, which models a templated +1 addition mutation, does not reliably predict the frequency of frame shifts.  相似文献   

15.
The crystal and molecular structures of two forms of 8-bromo-2',3'-O-isopropylideneadenosine have been determined by X-ray methods. In one form, the molecular structure has planar conformation in the sugar moiety and no intramolecular hydrogen bond. On the other hand, the molecular structure of the second form has C(2')-endo conformation and an intramolecular hydrogen bond. No stacking interaction between adjacent bases is found in either form, but two modes of the base-pairing hydrogen bond exist in the second form.  相似文献   

16.
A molecular dynamics simulation has been carried out with DNA polymerase beta (beta pol) complexed with a DNA primer-template. The templating guanine at the polymerase active site was covalently modified by the carcinogenic metabolite of benzo[a]pyrene, (+)-anti-benzo[a]pyrene diol epoxide, to form the major (+)-trans-anti-benzo[a]pyrene diol epoxide covalent adduct. Thus, the benzo[a]pyrenyl moiety (BP) is situated in the single-stranded template at the junction between double- and single-stranded DNA. The starting structure was based on the X-ray crystal structure of the rat beta pol primer-template and ddCTP complex [Pelletier, H., Sawaya, M. R., Kumar, A., Wilson, S. H., and Kraut, J. (1994) Science 264, 1891-1903]. During the simulation, the BP and its attached templating guanine rearrange to form a structure in which the BP is closer to parallel with the adjacent base pair. In addition, the templating attached guanine is displaced toward the major groove side and access to its Watson-Crick edge is partly obstructed. This structure is stabilized, in part, by new hydrogen bonds between the BP and beta pol Asn279 and Arg283. These residues are within hydrogen bonding distance to the incoming ddCTP and templating guanine, respectively, in the crystal structure of the beta pol ternary complex. Site-directed mutagenesis has confirmed their role in dNTP binding, discrimination, and catalytic efficiency [Beard, W. A., Osheroff, W. P., Prasad, R., Sawaya, M. R., Jaju, M., Wood, T. G., Kraut, J., Kunkel, T. A., and Wilson, S. H. (1996) J. Biol. Chem. 271, 12141-12144]. The predominant biological effect of the BP is DNA polymerase blockage. Consistent with this biological effect, the computed structure suggests the possibility that the BP's main deleterious impact on DNA synthesis might result at least in part from its specific interactions with key polymerase side chains. Moreover, relatively modest movement of BP and its attached guanine, with some concomitant enzyme motion, is necessary to relieve the obstruction and permit the observed rare incorporation of a dATP opposite the guanine lesion.  相似文献   

17.
CCE1 is a Holliday (four-way DNA) junction-specific endonuclease which resolves mitochondrial DNA recombination intermediates in Saccharomycescerevisiae. The junction-resolving enzymes are a diverse class, widely distributed in nature from viruses to higher eukaryotes. In common with most other junction-resolving enzymes, the cleavage activity of CCE1 is nucleotide sequence-dependent. We have undertaken a systematic study of the sequence specificity of CCE1, using a single-turnover kinetic assay and a panel of synthetic four-way DNA junction substrates. A tetranucleotide consensus cleavage sequence 5'-ACT downward arrowA has been identified, with specificity residing mainly at the central CT dinucleotide. Equilibrium constants for CCE1 binding to four-way junctions are unaffected by sequence variations, suggesting that substrate discrimination occurs predominantly in the transition state complex. CCE1 cuts most efficiently at the junction center, but can also cleave the DNA backbone at positions one nucleotide 3' or 5' of the point of strand exchange, suggesting a significant degree of conformational flexibility in the CCE1:junction complex. Introduction of base analogues at single sites in four-way junctions has allowed investigation of the sequence specificity of CCE1 in finer detail. In particular, the N7 moiety of the guanine base-pairing with the cytosine of the consensus sequence appears to be crucial for catalysis. The functional significance of sequence specificity in junction-resolving enzymes is discussed.  相似文献   

18.
19.
The DNA bonding sites of two pyrrolo[1,4]benzodiazepine derivatives--tomaymycin (Tma) and anthramycin (Atm)--were identified by exonuclease III (exo III) digestion, lambda exonuclease (lambda exo) digestion, and UvrABC nuclease incision analysis. exo III digestion stalls 4-5 bases 3' to a drug-DNA adduct. While this method can recognize most of the Atm-and Tma-DNA modification sites, it is complicated in that exo III digestion is also stalled by certain unmodified sequences and by drug bound to the opposite strand. lambda exo digestion stalls 1-2 bases 5' to a drug-DNA adduct. The lambda exo method also recognizes most of the drug-DNA bonding sites and renders a cleaner background; however, it is also affected by opposite-strand drug bonding. Due to their intrinsic digestion polarities, these two exonucleases tend to be stalled by the drug-DNA adduct at one end of the DNA molecule. Purified UvrA, UvrB, and UvrC proteins acting together make dual incisions 6-8 bases 5' and 4 bases 3' to a Atm- or Tma-DNA adduct. This nuclease complex recognizes all the Tma- and Atm-DNA bonding sites identified by exonuclease digestion methods, and all the UvrABC incisions can be attributed to drug modifications in the incised DNA strand. The degree of UvrABC nuclease incision increases with increasing drug concentrations for DNA modification. Using the UvrABC incision method, we have identified the sequence preference of Tma- and Atm-DNA adduct formation in three DNA fragments, and we have found that these two drugs have different preferred sites for adduction. Both Tma- and Atm-DNA bonding is strongly influenced by the 5' and 3' neighboring bases; the orders of preferred 5' and 3' bases for Tma are A > G, T > C, and A, C > G, T, and for Atm the orders are A > G > T > C and A > G > T, C. The preferred triplets for Tma bonding are -AGA- > -GGC-, -TGC-, and AGC- and for Atm are -AGA-, -AGG- > -GGA-, -GGG-.  相似文献   

20.
Both cis-[Pt(NH3)2(4-Me-Py)Cl]+ and trans-[Pt(NH3)2(4-Me-Py)Cl]+ bind DNA covalently at the N7 site of guanine residues forming mono-dentate adducts. However, like cisplatin and transplatin, only the cis isomer has anti-cancer activity, whereas the trans-isomer does not. In order to understand the molecular basis of the different activities associated with cis-[Pt(NH3)2(4-Me-Py)Cl]+ and trans-[Pt(NH3)2(4-Me-Py)Cl]+, the interactions of these two platinum compounds with the DNA heptamer CCTG*TCC:GGACAGG duplex (G* is the platinated guanine) have been examined. The reaction rate of cis-[Pt(NH3)2(4-Me-Py)Cl]+ with the single-stranded CCTGTCC is significantly faster than that of the trans isomer. The solution structure of the platinum-DNA adducts has been studied by two-dimensional NMR spectroscopy. Both the cis-platinum adducts and the trans-platinum adducts destabilize the DNA duplex significantly. The melting temperature (Tm) of the platinated heptamer duplex is estimated to be 10 degrees C lower than for the unplatinated duplex by NMR. At 2 degrees C, the base pairs located on the 5' side of the oligonucleotide, beyond the platinum lesion site, are disrupted. Over time, the platinum-DNA complex decomposes and the cis-[Pt(NH3)2(4-Me-Py)] platinum complex is gradually detached from DNA. No interstrand crosslinking is observed. The biological implications of the structural studies are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号