首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
构建高性能的绿光、红光窄发射多重共振热活化延迟荧光材料是当前发光材料研究的热点和难点。通过在硼氮骨架的间位上引入咔唑给体基团,构建了兼具多重共振荧光特征和分子内电荷转移态的荧光材料mBNCz,咔唑基团的引入提高了分子的HOMO能级,分子的荧光发射峰发生显著红移。同时,化合物具备窄的荧光发射光谱、良好的热稳定性、高的荧光量子产率和显著的热活化延迟荧光特征,在发光显示材料中具有较高的应用潜力。  相似文献   

2.
3.
通过反向系间窜越,热激活延迟荧光(TADF)材料可以同时利用三线态激子和单线态激子,使器件的理论内量子效率突破传统荧光材料的25%,达到理论上的100%,可与磷光材料相媲美,且材料价格便宜无需贵金属,因而受到人们广泛关注。近年来,对绿光及蓝光材料的研究进展较快,而红光材料由于分子结构的合理设计比较困难,研究进展相对较慢。从受体的类型出发,综述了近年来有关红色TADF材料的研究进展,并结合现有工作,对红色TADF材料的发展前景进行了展望。  相似文献   

4.
热活化延迟荧光(Thermally activated delayed fluorescence, TADF)材料是新一代发光材料,可以通过吸收环境中的热量使分子的三重态转换为单重态,理论上激子利用率达到100%,量子效率大大提高,在有机发光二极管(Organic light-emitting diode, OLED)中有广阔的应用前景。给-受体(Donor-acceptor, D-A)型的纯有机分子是关注度较高的一类TADF分子。其中咔唑作为一种给体单元,易经其他取代基修饰形成新给体,使D-A分子具有较小的最低三重态和单重态的能级差ΔEST,是经常选用的给体基团。另外,理论计算在研究咔唑衍生物分子的TADF性质,预测其在OLED中的性能方面发挥了重要作用。本文综述了基于不同咔唑类给体构筑的D-A结构的TADF分子,依据咔唑分子上取代基的不同,具体介绍了近五年各类TADF分子的结构特点和发光效率,重点讨论了这些分子在器件应用方面的性能,并且结合理论计算分析的结果总结了可能改变D-A型TADF性质的因素,期望能够为未来设计和合成性能更加优异的含咔唑给体的D-A型TA...  相似文献   

5.
杨薇  姜丽丽 《材料导报》2022,(S2):26-36
有机电致发光二极管(Organic light-emitting diode, OLED)在显示和照明领域中应用潜力巨大。蓝光作为三基色之一,是OLED中不可或缺的一部分。但是,蓝光材料禁带宽度大,所需激发能量过高,容易影响蓝光器件的效率与寿命,这限制了OLED的发展和应用。因此,发展高效、稳定的纯蓝光材料是实现低成本、高质量、长寿命商业化OLED的前提。本文综述了具有100%内量子效率的磷光蓝光材料和热活化延迟荧光材料的最新发展。同时,针对使用二元共混发光层系统的溶液处理存在的结晶性、相分离、基体材料选择以及精确控制掺杂剂浓度等问题,探究了蒽类发光材料、聚集诱导延迟荧光以及“热激子”材料作为非掺杂发光层材料在OLED领域的发展。本文系统综述了蓝光OLED研究的最新进展,为开发稳定、纯蓝的电致发光材料提供多种思路和借鉴。  相似文献   

6.
7.
为了提高基于手性荧光分子的有机圆偏振发光二极管(CPOLED)器件效率,本文提出了一种全新的热激活延迟荧光材料敏化圆偏振发光(TAS-CPL)的策略.设计合成了一对具有刚性骨架的螺烯对映体(P)-HAI和(M)-HAI作为器件的手性发光客体,研究发现螺烯对映体具有高的热稳定性、手性构型稳定性、良好的光物理性质,尤其是具...  相似文献   

8.
Owing to the difficulty in acquiring compounds with combined high energy bandgaps and lower-lying intramolecular charge-transfer excited states, the development of ultraviolet (UV) thermally activated delayed fluorescence (TADF) materials is quite challenging. Herein, through interlocking of the diphenylsulfone (PS) acceptor unit of a reported deep-blue TADF emitter (CZ-PS) by a dimethylmethylene bridge, CZ-MPS, a UV-emissive TADF compound bearing a shallower LUMO energy level and a more rigid structure than those of CZ-PS is achieved. This represents the first example of a UV-emissive TADF compound. Organic light-emitting diode (OLED) using CZ-MPS as the guest material can emit efficient UV light with emission maximum of 389 nm and maximum total external quantum efficiency (EQEmax) of 9.3%. Note that this EQEmax value is twice as high as the current record EQEmax (4.6%) for UV-OLEDs. This finding may shed light on the molecular design strategy for high-performance UV-OLED materials.  相似文献   

9.
Exciplex system exhibiting thermally activated delayed fluorescence (TADF) holds a considerable potential to improve organic light-emitting diode (OLED) performances. However, the operational lifetime of current exciplex-based devices, unfortunately, falls far behind the requirement for commercialization. Herein, rationally choosing a TADF-type electron acceptor molecule is reported as a new strategy to enhance OLEDs' operating lifetime. A comprehensive study of the exciplex system containing 9,9′,9′′-triphenyl-9H,9′H,9′′H-3,3′:6′,3′′-tercarbazole (Tris-PCz) and triazine (TRZ) derivatives clarifies the relationship between unwanted carrier recombination on acceptor molecules, TADF property of acceptors, and the device degradation event. By employing a proposed “exciton recycling” strategy, a threefold increased operational lifetime can be achieved while still maintaining high-performance OLED properties. In particular, a stable blue OLED that employs this strategy is successfully demonstrated. This research provides an important step for exciplex-based devices toward the significant improvement of operational stability.  相似文献   

10.
New blue (DBA-SAB) and deep-blue (TDBA-SAF) thermally activated delayed fluorescence (TADF) emitters are synthesized for blue-emitting organic-light emitting diodes (OLEDs) by incorporating spiro-biacridine and spiro-acridine fluorene donor units with an oxygen-bridged boron acceptor unit, respectively. The molecules show blue and deep-blue emission because of the deep highest occupied molecular energy levels of the donor units. Besides, both emitters exhibit narrow emission spectra with the full-width at half maximum (FWHM) of less than 65 nm due to the rigid donor and acceptor units. In addition, the long molecular structure along the transition dipole moment direction results in a high horizontal emitting dipole ratio over 80%. By combining the effects, the OLED utilizing DBA-SAB as the emitter exhibits a maximum external quantum efficiency (EQE) of 25.7% and 1931 Commission Internationale de l'éclairage (CIE) coordinates of (0.144, 0.212). Even a higher efficiency deep blue TADF OLED with a maximum EQE of 28.2% and CIE coordinates of (0.142, 0.090) is realized using TDBA-SAF as the emitter.  相似文献   

11.
12.
13.
A new series of luminescent 1,4-diazatriphenylene (ATP) derivatives with various peripheral donor units, including phenoxazine, 9,9-dimethylacridane and 3-(diphenylamino)carbazole, is synthesized and characterized as thermally activated delayed fluorescence (TADF) emitters. The influence of the donor substituents on the electronic and photophysical properties of the materials is investigated by theoretical calculations and experimental spectroscopic measurements. These ATP-based molecules with donor–acceptor–donor (D–A–D) structures can reduce the singlet–triplet energy gap (0.04–0.26 eV) upon chemical modification of the ATP core, and thus exhibit obvious TADF characteristics in solution and doped thin films. As a demonstration of the potential of these materials, organic light-emitting diodes containing the D–A–D-structured ATP derivatives as emitters are fabricated and tested. External electroluminescence quantum efficiencies above 12% and 8% for green- and sky-blue-emitting devices, respectively, are achieved.  相似文献   

14.
In this work, two novel thermally activated delayed fluorescence (TADF) emitters, 2tDMG and 3tDMG, are synthesized for high-efficiency organic light-emitting diodes (OLEDs), The two emitters have a tilted face-to-face alignment of donor (D)/acceptor (A) units presenting intramolecular noncovalent interactions. The two TADF materials are deposited either by an evaporation-process or by a solution-process, both of them leading to high OLED performance. 2tDMG used as the emitter in evaporation-processed OLEDs achieves a high external quantum efficiency (EQE) of 30.8% with a very flat efficiency roll-off of 7% at 1000 cd m−2. The solution-processed OLEDs also display an interesting EQE of 16.2%. 3tDMG shows improved solubility and solution processability as compared to 2tDMG, and thus a high EQE of 20.2% in solution-processed OLEDs is recorded. The corresponding evaporation-processed OLEDs also reach a reasonably high EQE of 26.3%. Encouragingly, this work provides a novel strategy to address the imperious demands for OLEDs with high EQE and low roll-off.  相似文献   

15.
Researchers have spared no effort to design new thermally activated delayed fluorescence (TADF) emitters for high‐efficiency organic light‐emitting diodes (OLEDs). However, efficient long‐wavelength TADF emitters are rarely reported. Herein, a red TADF emitter, TPA–PZCN, is reported, which possesses a high photoluminescence quantum yield (ΦPL) of 97% and a small singlet–triplet splitting (ΔEST) of 0.13 eV. Based on the superior properties of TPA–PZCN, red, deep‐red, and near‐infrared (NIR) OLEDs are fabricated by utilizing different device structure strategies. The red devices obtain a remarkable maximum external quantum efficiency (EQE) of 27.4% and an electroluminescence (EL) peak at 628 nm with Commission Internationale de L'Eclairage (CIE) coordinates of (0.65, 0.35), which represents the best result with a peak wavelength longer than 600 nm among those of the reported red TADF devices. Furthermore, an exciplex‐forming cohost strategy is adopted. The devices achieve a record EQE of 28.1% and a deep‐red EL peak at 648 nm with the CIE coordinates of (0.66, 0.34). Last, nondoped devices exhibit 5.3% EQE and an NIR EL peak at 680 nm with the CIE coordinates of (0.69, 0.30).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号