首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用机械合金化和热压烧结相结合的方法分别制备了w(Si C)分别为3%、5%、7%的铝基Si C/Al复合材料。研究了Si C/Al复合材料的显微组织和硬度。结果表明:当w(Si C)=5%时,复合材料显微组织最为细小、均匀。随着Si C含量的升高,硬度呈现先增加后减小趋势,且当w(Si C)=5%时,硬度达到最大值57. 75 HB。不同Si C含量铝基复合材料在室温干摩擦和边界润滑两种工况中的摩擦磨损性能表明:随着Si C含量的升高,复合材料磨损率和摩擦因数均呈先减少后增加的趋势,w(Si C)=5%的复合材料的磨损率和摩擦因数均最小,且边界润滑工况中材料磨损率和摩擦因数均小于干摩擦工况的;观察不同Si C含量的Si C/Al复合材料的磨损面及其磨屑形貌可以看出,干摩擦工况中,材料主要磨损机制为磨粒磨损和粘着磨损,而在边界润滑工况中,其主要磨损机制为磨粒磨损和轻微氧化磨损。  相似文献   

2.
船舶发动机轴瓦在受到炮弹攻击后处于极端工况,造成轴瓦失效破坏。传统的电镀镀层和磁控溅射薄膜因存在高污染、高成本等缺点,目前亟须寻求新的解决方案来提高轴瓦在极端工况下的耐磨性能。针对轴瓦因炮击而处于极端工况,设计了ZrO2ZrO2填充PTFE/PI-PAI的涂层材料,采用液体喷涂工艺在A370铝合金和Cu Pb22Sn2.5铜合金基体表面制备三种不同厚度涂层,研究涂层在不同润滑介质下的摩擦学性能。结果表明,涂层的摩擦学性能受到涂层硬度、润滑介质及基体支撑作用影响,涂层的硬度及弹性模量随厚度的增加呈现递减的趋势。涂层越厚,基体的支持作用越小。在油润滑工况下,铜合金基体上涂层摩擦因数及磨损率均小于铝合金,润滑油是涂层摩擦性能最主要影响因素。在海水工况下,涂层主要表现为磨粒磨损,并出现明显的犁沟现象。铜合金基体上涂层的摩擦因数高于铝合金,海水腐蚀和高频往复摩擦带来的冲刷作用是摩擦性能主要影响因素。在干摩擦工况下,涂层以黏着磨损为主。涂层的硬度受到基体支撑的影响,高频往复运动中硬质对磨球与硬质基体夹击软质涂层和接触压力是摩擦性能主要影响因素。通过涂层与...  相似文献   

3.
柴琛  汪华月  陈兆祥  李云玉  高珊 《表面技术》2021,50(7):266-275, 309
目的 研究钛微弧氧化膜层在不同摩擦工况下的摩擦磨损行为,为该膜层在工业领域中的合理应用提供参考.方法 首先,在铝酸盐电解液中,通过恒压模式制备钛微弧氧化膜层,然后在四种摩擦工况下(干摩擦/GCr15对磨球、干摩擦/Al2O3对磨球、油润滑/GCr15对磨球和油润滑/Al2O3对磨球),测试微弧氧化膜层的摩擦学性能.通过XRD分析膜层的物相组成,通过SEM、EDS分析不同摩擦工况下磨痕的表面形貌和元素分布,测量膜层的摩擦系数和磨损率,探讨不同工况下钛微弧氧化膜层的摩擦磨损形式和机理.结果 干摩擦/GCr15对磨球工况下,膜层主要发生磨粒磨损,磨损率为1.4×10–5 mm3/(N·m);在干摩擦/Al2O3对磨球工况下,膜层迅速失效;在油润滑/GCr15对磨球工况下,膜层仅发生轻微磨损,表面出现疲劳剥落现象,磨损率为5.3×10–6 mm3/(N·m);在油润滑/Al2O3对磨球工况下,膜层疲劳磨损较严重,磨损率为1.5×10–5 mm3/(N·m).结论 当对磨副材料为硬度较低的金属材料时,钛微弧氧化膜层在干摩擦和油润滑工况下,均表现出良好的耐磨性,但干摩擦工况容易造成对磨副材料的严重磨损;当对磨副材料为高硬度的陶瓷材料时,干摩擦工况下,钛微弧氧化膜层的耐磨性很差,然而通过润滑油可以显著降低膜层的摩擦系数和磨损率.  相似文献   

4.
高铝铜合金粗粉超音速等离子喷涂层的边界润滑摩擦特性   总被引:1,自引:0,他引:1  
采用超音速等离子喷涂技术在45#钢基体上制备高铝铜合金粗粉涂层,对涂层进行边界润滑摩擦实验,分析涂层的摩擦磨损特征及表面元素的质量损失。结果发现:涂层的摩擦因数随外加载荷的增加呈逐渐下降趋势;尽管磨损量随载荷的增大逐渐增加,但磨损率呈下降趋势,表明随外加载荷的增加涂层耐磨性能逐渐增强。涂层在中低载荷下以磨粒磨损为主,当载荷达到高载荷540 N时,涂层由磨粒磨损向疲劳磨损转变,并在犁沟边缘发生疲劳磨损的同时表现出轻度的粘着磨损。边界润滑条件下,涂层元素的质量磨损主要表现为Cu元素的损失,磨粒磨损留下的犁沟为O元素进入摩擦界面提供通道,使涂层表面形成微氧化膜。  相似文献   

5.
为探索表面ZrO2涂层的球铰副在液压马达中的摩擦学规律,采用摩擦磨损试验机和白光干涉仪模拟ZrO2涂层的球铰副在不同载荷和转速的工况下,球铰副在液压马达中的摩擦磨损变化情况。分别从摩擦因数、磨损体积和磨痕形貌分析其摩擦磨损规律,从中找到最优的工况去提高ZrO2涂层的球铰副寿命和工作效率。通过开展控制变量试验发现:转速对ZrO2涂层的球铰副摩擦学性能的影响远大于载荷,在100 N-100 r/min时摩擦因数最小为0.059 6;磨损体积随载荷和转速的增大而逐渐增大,且在50 N-50 r/min时磨损体积最小为0.184 mm3。综合以上规律发现,载荷100 N和转速50 r/min工况下ZrO2涂层的球铰副减摩抗磨效果最好,低转速能够有效延长液压马达的使用寿命和提高机械效率。  相似文献   

6.
等离子喷涂Al2O3-13%TiO2涂层的海水腐蚀磨损性能   总被引:1,自引:0,他引:1  
基于等离子喷涂技术构筑了高耐磨、耐蚀的Al2O313%TiO2涂层(AT13涂层),利用Rtec磨蚀试验机研究AT13涂层在干摩擦、去离子水和人工海水介质中的摩擦磨损性能,并利用电化学工作站分析了涂层在静态腐蚀和滑动磨损中的开路电位和极化曲线的变化,探讨了AT13涂层的腐蚀磨损机理。结果表明:热喷涂AT13涂层由αAl2O3、γAl2O3、金红石型TiO2和Al2TiO5相组成,其中富Ti相呈条带状分布于富Al基体中;AT13涂层在海水工况具有较好的润滑性,与干摩擦相比,其摩擦因数减小了0.15,且具有较好的稳定性;在3种工况下,AT13涂层都具有优异的耐磨损性能,海水润滑条件下,AT13涂层具有最小的磨损率,且随载荷的增加而减小;磨损过程加重了海水对涂层的腐蚀,但影响较小。  相似文献   

7.
为了探究不同润滑状态下,液压作动器关键部件材料和表面处理技术的选择对摩擦磨损性能的影响,在干摩擦、乏油润滑以及充分供油润滑3种润滑状态下,分别对活塞-液压缸内壁与活塞杆-端盖2种应用工况开展正交摩擦试验。通过测试不同对摩副的摩擦因数、磨损量以及磨损前后表面形貌的变化,分析润滑状态对2种应用工况磨损性能的影响。受导向带的表面织构及碳化钨自润滑性能的影响,在干摩擦与乏油润滑状态下,活塞-液压缸配伍界面采用40Cr-导向带对摩副、活塞杆-端盖配伍界面采用碳化钨-导向带对摩副时的摩擦因数较低;而在充分供油润滑条件下,由于接触界面之间会形成油膜,使得摩擦磨损趋势与上述结果相反,活塞-液压缸配伍界面采用Cu-40Cr对摩副、活塞杆-端盖配伍界面采用Cu-碳化钨对摩副时的摩擦因数较低。  相似文献   

8.
镍-铁-石墨-硅自润滑材料及其性能   总被引:10,自引:4,他引:10  
采用熔炼法制备出镍-铁-石墨-硅自润滑材料,并研究了铁含量对镍-铁-石墨-硅自润滑材料的力学性能、干摩擦磨损性能及油润滑摩擦磨损性能的影响.结果表明:随着铁含量的增加,合金中石墨量逐渐增多,自润滑性能逐渐提高,材料的冲击韧性和抗拉强度逐渐降低,硬度值先减小后增大;材料的干摩擦因数和油润滑摩擦因数均随着铁含量的增加而逐渐降低,磨损率随着硬度值的增大逐渐减小,其中Ni-60Fe-3.5C-1Si合金(质量分数,%)的摩擦因数最小,干摩擦因数和油润滑摩擦因数分别保持在0.18和0.05.  相似文献   

9.
在不同Ti靶电流下,采用非平衡磁控溅射技术在SDC99冷作模具钢表面制备CrTiAlN涂层。采用X射线衍射仪、原位纳米力学测试系统和摩擦磨损试验机等测试分析了Ti靶电流对涂层的相结构、力学性能及摩擦磨损性能的影响。结果表明:随着Ti靶电流的增加,涂层的厚度及Ti含量呈非线性增加,涂层的纳米硬度与弹性模量分别增至26.08与302.86 GPa,Cr(Ti,Al) N涂层均为单相fcc结构;在Ti靶电流4 A下沉积的涂层的摩擦磨损性能最好,干摩擦因数和磨损率分别为不含Ti涂层的69.77%和65.31%;油磨26 h后磨损率为不含Ti涂层的25.67%,磨损机制为磨粒磨损与疲劳磨损的综合。  相似文献   

10.
采用多源磁控溅射物理气相沉积法在单晶硅表面制备梯度变化的非晶碳涂层(类金刚石薄膜),通过调整工艺参数获得厚度在1~2μm的非晶碳涂层;采用球-盘式摩擦磨损试验机探讨了非晶碳涂层在干燥空气、水润滑和油润滑环境下的摩擦磨损行为。结果表明:非晶碳涂层的摩擦因数基本保持在0.1左右,摩擦环境的变化对涂层的磨损率影响较大;非晶碳涂层在水润滑环境中的磨损率在10^-7mm^3/Nm数量级;在干燥空气摩擦环境中具有稳定的耐磨损性能,磨损率在10^-9mm^3/Nm数量级;特别在油润滑的环境下,非晶碳涂层的耐磨损性能更加优异。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号