首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
本研究通过对不同表面活性剂体系的稳泡性、去污力和刺激性等对比,确定了一款以APG0810和吐温-20为表面活性剂框架,以甜菜碱水杨酸盐为抑菌成分的宠物免洗抑菌沐浴泡泡的制备,配方温和、去污力强、抑菌高效。  相似文献   

2.
以绿色表面活性剂烷基糖苷APG-1214和其他低刺激的表面活性剂为主要原料,添加新型季铵盐表面活性剂并辅以其他助剂,通过模糊综合评价法对几种抑菌型洗手液配方的综合感官质量进行筛选并对筛选出的洗手液样品进行稳定性实验、抑菌实验和皮肤刺激性实验。研究结果表明,筛选的抑菌型洗手液配方样品综合感官质量优异,其他指标亦达到指定要求。  相似文献   

3.
本论文利用一种新型具备抑菌活性的阴离子型表面活性剂为实验材料,选取大肠杆菌及金黄色葡萄球菌作为目标菌种,通过纸片扩散法对其抑菌活性进行了研究,利用吊片法对其水溶液的表面张力进行了测定,并研究了其抑菌活性与表面活性的关系,讨论了其抑菌机理。  相似文献   

4.
通过测定3种常用的表面活性剂(PLANTACARE 2000 UP、AMILITE GCK-12H和DIAPON K-SG)及其与苯氧乙醇不同搭配的抑菌率,来研究表面活性剂及其与防腐剂苯氧乙醇相互作用的抑菌效果.结果表明:3种表面活性剂对金黄色葡萄球菌和大肠菌杆菌都有一定的抑菌效果,且随质量分数增加抑菌作用逐渐增强;A...  相似文献   

5.
文章利用已合成的一种新型具备抑菌活性的阴离子型表面活性剂为实验试剂,在分析了其抑菌机理的基础上,将其应用到新鲜天然胶乳的短期保存中,通过一些性能指标对其保存效果进行了评价,并分析了影响胶乳稳定性的因素。  相似文献   

6.
简要介绍了生物表面活性剂的分类及其合成方法;较详细地介绍了生物表面活性剂与化学合成表面活性剂相似和优于化学合成表面活性剂的特性以及生物表面活性剂的生理学功能;重点阐述了生物表面活性剂在石油工业、环境工程、食品工业、化妆品工业及医学领域等方面的应用现状;最后展望了生物表面活性剂的应用前景。  相似文献   

7.
将十二烷基二甲基苄基氯化铵(1227)应用于洗衣液配方制备抗抑菌洗衣液,参照行业相关标准与市售抗抑菌洗衣液对比,全面考察了1227对产品感官和理化指标、去污力以及泡沫性能等的影响;重点考察了复配1227自制抗抑菌洗衣液的抗抑菌性能及其对人体皮肤的刺激性。结果表明,在去阴离子表面活性剂配方体系中,1227同其他表面活性剂的配伍性良好,产品的各项指标均能达到标准要求;复配1227自制抗抑菌洗衣液泡沫低,更易漂洗;复配1227质量分数为2%的自制抗抑菌洗衣液,其质量分数为1%的水溶液对大肠杆菌和金黄色葡萄球菌作用20 min的抗抑菌率均达到100%,具有较强的抗抑菌作用,远优于市售抗抑菌洗衣液对2菌种的抗抑菌效果,而且还具有较长时效的抗抑菌能力;复配1227质量分数为2%的自制抗抑菌洗衣液对人体皮肤无明显刺激作用。  相似文献   

8.
任庆海  林里  梁栋 《化工时刊》2004,18(8):9-11,16
生物表面活性剂是天然表面活性剂的一个分支,具有与化学合成表面活性剂相区别的理化特性,对生物表面活性剂的发展符合目前发展绿色表面活性剂和生物应用技术的趋势。本文着重论述了生物表面活性剂在食品中的发展和应用.以及现在的实际问题和未来的发展方向。  相似文献   

9.
生物表面活性剂应用概述及其发展前景   总被引:3,自引:0,他引:3  
随着人们崇尚自然和环保意识的增强,生物表面活性剂将成为化学合成表面活性剂的理想替代品,并有更加广阔的应用前景及发展潜力.本文介绍了生物表面活性剂的特性及其生产制备方法,并综述了近几年生物表面活性剂在石油、洗涤、医药、食品等工业领域的应用与研究进展,主要介绍了利用生物表面活性剂在提高石油采收率等方面的应用,探讨了今后生物表面活性剂的主要发展方向.  相似文献   

10.
生物表面活性剂及其应用   总被引:1,自引:0,他引:1  
简要介绍了生物表面活性剂相对于化学合成表面活性剂的特性、分类和制备方法;重点综述了生物表面活性剂在石油、医药、化妆品、农业、食品和环境工程等领域的应用,展现了生物表面活性剂有望取代化学合成表面活性剂,成为绿色表面活性剂发展的重要方向,提出了生物表面活性剂目前存在的主要问题和发展前景.  相似文献   

11.
Surfactants find applications in a wide variety of industrial processes. Biomolecules that are amphiphilic and partition preferentially at interfaces are classified as biosurfactants. In terms of surface activity, heat and pH stability, many biosurfactants are comparable to synthetic surfactants. Therefore, as the environmental compatibility is becoming an increasingly important factor in selecting industrial chemicals, the commercialization of biosurfactant is gaining much attention. In this paper, the general properties and functions of biosurfactants are introduced. Strategies for development of biosurfactant assay, enhanced biosurfactant production, large scale fermentation, and product recovery are discussed. Also discussed are recent advances in the genetic engineering of biosurfactant production. The potential applications of biosurfactants in industrial processes and bioremediation are presented. Finally, comments on the application of enzymes for the production of surfactants are also made.  相似文献   

12.
王晨伊  刘琦  彭勃  吕静 《化工进展》2019,38(9):4012-4019
表面活性素(surfactin)是一类由革兰氏阳性的枯草芽孢杆菌产生的脂肽(lipopeptide)型生物表面活性剂,因其具有优于化学合成表面活性剂的若干优点,如低毒性、高生物降解性、更好的环境相容性,且在极端环境下稳定性好,在提高石油采收率方面有较好的应用潜力,但是目前只有少数的生物表面活性剂可以大规模生产实现工业化应用。本文介绍了surfactin生物表面活性剂的化学结构和生物合成机制,并对其发酵生产过程的影响因素进行分析,为提高其生产经济性探索不同的策略,例如使用更便宜的原材料、优化培养基组分、优化反应器等,系统论述了surfactin生物表面活性剂的驱油机理和其与化学合成表面活性剂的复配研究,同时针对其应用时的不足之处提出研究新思路。  相似文献   

13.
生物表面活性剂的开发和应用   总被引:17,自引:2,他引:17  
生物表面活性剂经过三十年的发展,现分为发酵法和酶法合成两个分支。生物表面活性剂的品种包括中性类脂、磷脂/脂肪酸、糖脂、含氨基酸类脂,聚合型和特殊型生物表面活性剂。  相似文献   

14.
Surfactants find applications in almost every chemical industry, such as household and industrial cleaning, paper, inks, agrochemicals, and personal care or pharmaceuticals. However, their production and use can have a negative impact on the environment and health. Increasing environmental concerns and the strong interest in renewable resources have led to the development of innovative and environmentally friendly surfactants produced by clean and/or sustainable technologies. The aim of this review is to explore the different types of surfactants and their architectures. Then, it will describe the two categories of renewable surfactants: biosurfactants obtained by fermentation, and bio-based surfactants containing either a bio-sourced polar head group or a bio-sourced hydrophobic tail. Finally, this review will focus on highly specialized applications of surfactants (protein crystallization, transfection, and nanotechnology), which are closely related to the ability of surfactants to organize themselves in supramolecular architectures.  相似文献   

15.
This article includes an updated review of the classification, uses and side effects of surfactants for their application in the cosmetic, personal care and pharmaceutical industries. Based on their origin and composition, surfactants can be divided into three different categories: (i) synthetic surfactants; (ii) bio-based surfactants; and (iii) microbial biosurfactants. The first group is the most widespread and cost-effective. It is composed of surfactants, which are synthetically produced, using non-renewable sources, with a final structure that is different from the natural components of living cells. The second category comprises surfactants of intermediate biocompatibility, usually produced by chemical synthesis but integrating fats, sugars or amino acids obtained from renewable sources into their structure. Finally, the third group of surfactants, designated as microbial biosurfactants, are considered the most biocompatible and eco-friendly, as they are produced by living cells, mostly bacteria and yeasts, without the intermediation of organic synthesis. Based on the information included in this review it would be interesting for cosmetic, personal care and pharmaceutical industries to consider microbial biosurfactants as a group apart from surfactants, needing specific regulations, as they are less toxic and more biocompatible than chemical surfactants having formulations that are more biocompatible and greener.  相似文献   

16.
To examine the usage of biosurfactants as potential alternatives to chemosynthetic surfactants in controlling bubble behavior in the flotation process, a high-speed photographic method was employed to measure the motion of single bubbles and the size distribution of bubbles in the presence of biosurfactants in a laboratory scale flotation column. Deionized water, rhamnolipid, tea saponin and t-C8phenolethoxylateEO9 were used for making various surfactant solutions. Bubble trajectory, dimensions, velocity and size distribution were then determined from the recorded frames using the image analysis software. The results show that similar to chemosynthetic surfactants, the addition of biosurfactants has significant effects on bubble motion and size distribution. The addition of a small amount of tea saponin can significantly dampen bubble deformation, slow down terminal velocity, stabilize bubble trajectory, reduce bubble size and increase the specific surface area of bubbles due to the Marangoni effect. In addition, the biosurfactant effect on bubble behavior has been also found to depend on their type and concentration. The effect of tea saponin, fairly close to C8phenolethoxylateEO9, is stronger than rhamnolipid. The findings in the present study suggest that such biosurfactant as tea saponin may be good substitutes of chemosynthetic surfactants to control bubble behavior in flotation operation.  相似文献   

17.
生物表面活性剂在油田中的应用   总被引:3,自引:0,他引:3  
生物表面活性剂和化学表面活性剂一样 ,有亲水基团和疏水基团 ,它是由微生物生长在水不溶的物质中并以它为食物源产生的。在油田中 ,生物表面活性剂是微生物提高采收率的重要机理 ,具有水溶性好、反应产物均一、无毒、安全、驱油效果好等特点。生物表面活性剂有 4种类型 :糖脂类、磷脂类、脂蛋白或缩氨酸脂和聚合物类。大多数生物表面活性剂是糖脂 ,是碳水化合物连接在长链脂肪酸上。目前 ,室内研究主要是研究各种反应条件对微生物产生生物表面活性剂和生物表面活性剂对原油的影响。矿场实验有地面发酵和地下发酵两种形式。从生物表面活性剂的特点、筛选产生生物表面活性剂的菌种、生物表面活性剂的类型、室内研究、矿场实验和今后的发展方向等 6个方面综述了油田中的生物表面活性剂的应用  相似文献   

18.
综述了生物表面活性剂在日化行业的研究进展和用于日化行业的生物表面活性剂新产品,探讨了生物表面活性剂在日化行业的应用优势及限制因素,指出了应对措施并对其在日化行业的应用前景进行了展望。  相似文献   

19.
In this study, 2 types of amino acid‐based biosurfactants such as potassium cocoyl glycinate (CGK) and sodium cocoyl glycinate (CGN) were synthesized from coconut oil. Their chemical structures were identified using FT‐IR, 1H NMR, and 13C NMR spectroscopies. Characterization of their interfacial properties has shown that both CGK and CGN surfactants are surface‐active and effective in reducing interfacial free energy. Washing test results indicated relatively good detergency compared with surfactants commonly employed in detergent applications. From environmental compatibility tests, both CGK and CGN are found to be readily biodegradable, nontoxic, nonirritating, and very mild. In particular, the CGK surfactant was found to be more efficient in reducing interfacial free energy since a larger number of CGK molecules are preferentially adsorbed at the air–water interface due to higher hydrophobicity and larger mobility of CGK than CGN, indicating possible uses in detergent applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号