首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Immunoelectron microscopy with anti-nucleolin defined substructures within the multiple nucleoli of biosynthetically active stage II-III oocytes and within the nucleoli of relatively quiescent stage VI oocytes of Xenopus laevis. Dense fibrillar components (DFCs) of nucleoli from stage II-III oocytes consisted of nucleolonemas that radiated from a continuous DFC sheath surrounding fibrillar centers (FCs). Discernible granular regions (GRs) were absent in these same nucleoli. Conversely, stage VI oocyte nucleoli displayed compacted DFCs and prominent GRs. Immunofluorescence microscopy then tracked fibrillarin, nucleolin, and condensed DNA through oogenesis and into progesterone-induced meiotic maturation and nuclear breakdown. In stage II-III oocyte nucleoli, fibrillarin was enriched near the FC-DFC boundaries, while nucleolin was distributed throughout these same DFCs. Both proteins were enriched within the compacted DFCs of stage VI oocyte nucleoli. Staining with (DAPI) 4',6-diamidino-2-phenylindole showed condensed DNA within nucleolar FCs of both stage II-III and stage VI oocyte. Upon nuclear breakdown, we found fibrillarin and nucleolin in small particles and in the surrounding cytoplasm. Although we saw no trace of fibrillarin or nucleolin in nuclear remnants prepared just minutes later, DAPI-stained particles remained within these preparations, thus suggesting that FCs were at least slow to disassemble.  相似文献   

2.
3.
The isolation and characterisation of a cDNA coding for a vicilin-like protein of the fern Matteuccia struthiopteris is described. The corresponding gene is specifically expressed during late stages of spore development. Extensive sequence comparisons suggest that the fern protein can be considered as a molecular missing link between single-domain germin/spherulin-like proteins and two-domain seed storage globulins of gymnosperms and angiosperms. Further, evidence is provided for the existence of a superfamily of structurally related, functionally different proteins which includes storage globulins of the vicilin and legumin families, a membrane-associated sucrose-binding protein of soybean, a Forssman antigen-binding lectin of velvet bean, the precursor of the vacuolar membrane bound proteins MP27/MP32 of pumpkin, the embryogenesis-specific protein Gea8 of carrot, the fern-spore-specific protein described here as well as the functionally diverse family of germins/germin-like proteins and the spherulins of myxomycetes. We propose that seed storage globulins of spermatophytes evolved from desiccation-related single-domain proteins of prokaryotes via a duplicated two-domain ancestor that is best represented by the extant fern spore-specific vicilin-like protein.  相似文献   

4.
A role for thioredoxin in metazoan DNA synthesis has been assessed by injecting rapidly dividing Xenopus eggs with purified heterologous thioredoxins, which might act as inhibitors if they were to replace resident thioredoxins in some but not all reaction steps. Of 10 tested proteins, spinach chloroplast thioredoxin m is the most potent inhibitor. Eggs cleave and produce cells lacking nuclei. DNA synthesis is severely reduced. Development arrests before gastrulation. In egg extracts, thioredoxin m inhibits incorporation of radioactive dCTP into DNA of sperm nuclei and M13 phage. Inhibition exceeds 90% when thioredoxin m and M13 DNA are preincubated together. The data support the interpretation that thioredoxins normally participate in initiation of metazoan DNA synthesis.  相似文献   

5.
6.
7.
In the preceding paper Fontanilla and Nuccitelli (Biophysical Journal 75:2079-2087 (1998)) present detailed measurements of the shape and speed of the fertilization Ca2+ wave in Xenopus laevis eggs. In order to help interpret their results, we develop here a computational technique based on the finite element method that allows us to carry out realistic simulations of the fertilization wave. Our simulations support the hypothesis that the physiological state of the mature egg is bistable, i.e., that its cytoplasm can accommodate two alternative physiological Ca2+ concentrations: a low concentration characteristic of the prefertilization state and a greatly elevated concentration characteristic of the state following the passage of the wave. We explore this hypothesis by assuming that the bistability is due to the release and re-uptake properties of the endoplasmic reticulum (ER) as determined by inositol trisphosphate (IP3) receptor/Ca2+ channels and sarcoendoplasmic reticulum calcium ATPase (SERCA) pumps. When combined with buffered diffusion of Ca2+ in the cytoplasm, our simulations show that inhomogeneities in the Ca2+ release properties near the plasma membrane are required to explain the temporal and spatial dependences of the shape and speed of these waves. Our results are consistent with an elevated IP3 concentration near the plasma membrane in the unfertilized egg that is augmented significantly near the site of fertilization. These gradients are essential in determining the concave shape of the Ca2+ fertilization wave front.  相似文献   

8.
The use of FNA cytology to diagnose pathologic conditions of the thyroid has increased considerably in recent years, particularly since it has reduced by half the number of patients undergoing surgery. On the one hand, this diagnostic technique has attracted a certain amount of well justified criticism, but on the other, recent cytohistologic correlations and new scientific knowledge are continually improving its application. We shall discuss the latter aspect in more detail and deal with some simple but informative points which the pathologist may find useful in daily practice.  相似文献   

9.
10.
Previous experiments from our lab have suggested that the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) is required for sperm-induced egg activation in Xenopus laevis. Here we measure the endogenous production of both Ins(1,4,5)P3 and PIP2 during the sperm-induced and ionomycin-induced calcium wave in the egg and find that both increase following fertilization. Ins(1,4,5)P3 increases 3.2-fold from an unfertilized egg level of 0.13 pmole per egg (0.29 microM) to a peak of 0.42 pmole per egg (0.93 microM) as the calcium wave reaches the antipode in the fertilized egg. This continuous production of Ins(1,4,5)P3 during the time that the Ca2+ wave is propagating across the egg suggests the involvement of Ins(1,4,5)P3 in wave propagation. This increase in Ins(1,4,5)P3 is smaller in ionomycin-activated eggs than in sperm-activated eggs, suggesting that the sperm-induced production of Ins(1,4,5)P3 involves a PIP2 hydrolysis pathway that is not simply raising intracellular Ca2+. While one might expect PIP2 levels to fall as a result of hydrolysis, we find that PIP2 actually increases 2-fold. The total lipid fraction in unfertilized egg exhibits 0.8 pmole PIP2 per egg and this increases to 1.5 pmole as the calcium wave reaches the antipode. The PIP2 concentration peaks 2 min after the completion of the calcium wave at 1.8 pmole per egg. The amount of PIP2 in the animal and vegetal hemispheres of the egg was also measured by cutting frozen eggs in half. The vegetal hemisphere contained twice the amount of PIP2 as the animal hemisphere but it also contained twice the amount of lipid. Thus, there was an equivalent amount of PIP2 normalized to lipid in each hemisphere. Isolated animal and vegetal hemisphere cortices exhibit similar PIP2 concentrations, suggesting that the 2-fold higher total PIP2 in the vegetal half is not due to a gradient of PIP2 in the plasma membrane, but rather implies that cytoplasmic organelle membranes also contain PIP2.  相似文献   

11.
12.
Entry into mitosis depends upon activation of the dual-specificity phosphatase Cdc25C, which dephosphorylates and activates the cyclin B-Cdc2 complex. Previous work has shown that the Xenopus polo-like kinase Plx1 can phosphorylate and activate Cdc25C in vitro. In the work presented here, we demonstrate that Plx1 is activated in vivo during oocyte maturation with the same kinetics as Cdc25C. Microinjection of wild-type Plx1 into Xenopus oocytes accelerated the rate of activation of Cdc25C and cyclin B-Cdc2. Conversely, microinjection of either an antibody against Plx1 or kinase-dead Plx1 significantly inhibited the activation of Cdc25C and cyclin B-Cdc2. This effect could be reversed by injection of active Cdc25C, indicating that Plx1 is upstream of Cdc25C. However, injection of Cdc25C, which directly activates cyclin B-Cdc2, also caused activation of Plx1, suggesting that a positive feedback loop exists in the Plx1 activation pathway. Other experiments show that injection of Plx1 antibody into early embryos, which do not require Cdc25C for the activation of cyclin B-Cdc2, resulted in an arrest of cleavage that was associated with monopolar spindles. These results demonstrate that in Xenopus laevis, Plx1 plays important roles both in the activation of Cdc25C at the initiation of mitosis and in spindle assembly at late stages of mitosis.  相似文献   

13.
In sea urchin eggs, fertilisation is followed by a calcium wave, cortical granule exocytosis and fertilisation envelope elevation. Both the calcium wave and cortical granule exocytosis sweep across the egg in a wave initiated at the point of sperm entry. Using differential interference contrast (DIC) microscopy combined with laser scanning confocal microscopy, populations of cortical granules undergoing calcium-induced exocytosis were observed in living urchin eggs. Calcium imaging using the indicator Calcium Green-dextran was combined with an image subtraction technique for visual isolation of individual exocytotic events. Relative fluorescence levels of the calcium indicator during the fertilisation wave were compared with cortical fusion events. In localised regions of the egg, there is a 6s delay between the detection of calcium release and fusion of cortical granules. The rate of calcium accumulation was altered experimentally to ask whether this delay was necessary to achieve a threshold concentration of calcium to trigger fusion, or was a time-dependent activation of the cortical granule fusion apparatus after the 'triggering' event. Calcium release rate was attenuated by blocking inositol 1,4,5-triphospate (InsP3)-gated channels with heparin. Heparin extended the time necessary to achieve a minimum concentration of calcium at the sites of cortical granule exocytosis. The data are consistent with the conclusion that much of the delay observed normally is necessary to reach threshold concentration of calcium. Cortical granules then fuse with the plasma membrane. Further, once the minimum threshold calcium concentration is reached, cortical granule fusion with the plasma membrane occurs in a pattern suggesting that cortical granules are non-uniform in their calcium sensitivity threshold.  相似文献   

14.
Three types of ribosomal preparations from Xenopus laevis eggs and embryos were tested in a cell-free system to study possible translational regulation of protein synthesis as mediated by the ribosome during early amphibian development: type 1, a crude high-speed sediment, mainly containing monoribosomes completely dissociable by 0.5 M KC1; type II, ribosomes washed with 0.5 M KC1; and type III, ribosomes treated with puromycin - 0.5 M KC1. All three types showed an active response to the addition of poly[U]. Type III was found to be the most active: levels of incorporation of 30 phenylalanine residues/ribosome were reached. In all three cases ribosomes prepared from unfertilized eggs were 30-40% less active in vitro than those from cleavage and gastrula stages.  相似文献   

15.
16.
Oligodendrocyte precursors originate in the ventral ventricular zone of the developing spinal cord. To examine whether the notochord is essential for the development of oligodendrocytes in Xenopus spinal cord the notochord was prevented from forming, ablated, or transplanted during early stages of development. Differentiated oligodendrocytes did not appear in spinal cord regions lacking a notochord in animals in which notochord failed to develop after UV irradiation at the one-cell stage. Similarly, differentiated oligodendrocytes were not detected in the spinal cord adjacent to the site of segmental notochord ablation at embryonic or larval stages. Transplantation of an additional notochord dorsal to the spinal cord induced the premature appearance of differentiated oligodendrocytes in adjacent lateral and dorsal spinal cord white matter. These results indicate that the development of Xenopus spinal cord oligodendrocytes is dependent on local influences from the notochord and suggest that the notochord is essential for oligodendrocyte development in Xenopus spinal cord.  相似文献   

17.
18.
p53 activity is essential for normal development in Xenopus   总被引:1,自引:0,他引:1  
BACKGROUND: The tumor suppressor p53 plays a key role in regulating the cell cycle and apoptosis in differentiated cells. Mutant mice lacking functional p53 develop normally but die from multiple neoplasms shortly after birth. There have been hints that p53 is involved in morphogenesis, but given the relatively normal development of p53 null mice, the significance of these data has been difficult to evaluate. To examine the role of p53 in vertebrate development, we have determined the results of blocking its activity in embryos of the frog Xenopus laevis. RESULTS: Two different methods have been used to block p53 protein activity in developing Xenopus embryos--ectopic expression of dominant-negative forms of human p53 and ectopic expression of the p53 negative regulator, Xenopus dm-2. In both instances, inhibition of p53 activity blocked the ability of Xenopus early blastomeres to undergo differentiation and resulted in the formation of large cellular masses reminiscent of tumors. The ability of mutant p53 to induce such developmental tumors was suppressed by co-injection with wild-type human or wild-type Xenopus p53. Cells expressing mutant p53 activated zygotic gene expression and underwent the mid-blastula transition normally. Such cells continued to divide at approximately normal rates but did not form normal embryonic tissues and never underwent terminal differentiation, remaining as large, yolk-filled cell masses that were often associated with the neural tube or epidermis. CONCLUSIONS: In Xenopus, the maternal stockpile of p53 mRNA and protein seems to be essential for normal development. Inhibiting p53 function results in an early block to differentiation. Although it is possible that mutant human p53 proteins have a dominant gain-of-function or neomorphic activity in Xenopus, and that this is responsible for the development of tumors, most of the evidence indicates that this is not the case. Whatever the basis of the block to differentiation, these results indicate that Xenopus embryos are a sensitive system in which to explore the role of p53 in normal development and in developmental tumors.  相似文献   

19.
20.
The translation of specific maternal mRNAs is regulated during early development. For some mRNAs, an increase in translational activity is correlated with cytoplasmic extension of their poly(A) tails; for others, translational inactivation is correlated with removal of their poly(A) tails. Recent results in several systems suggest that events at the 3' end of the mRNA can affect the state of the 5' cap structure, m7G(5')ppp(5')G. We focus here on the potential role of cap modifications on translation during early development and on the question of whether any such modifications are dependent on cytoplasmic poly(A) addition or removal. To do so, we injected synthetic RNAs into Xenopus oocytes and examined their cap structures and translational activities during meiotic maturation. We draw four main conclusions. First, the activity of a cytoplasmic guanine-7-methyltransferase increases during oocyte maturation and stimulates translation of an injected mRNA bearing a nonmethylated GpppG cap. The importance of the cap for translation in oocytes is corroborated by the sensitivity of protein synthesis to cap analogs and by the inefficient translation of mRNAs bearing nonphysiologically capped 5' termini. Second, deadenylation during oocyte maturation does not cause decapping, in contrast to deadenylation-triggered decapping in Saccharomyces cerevisiae. Third, the poly(A) tail and the N-7 methyl group of the cap stimulate translation synergistically during oocyte maturation. Fourth, cap ribose methylation of certain mRNAs is very inefficient and is not required for their translational recruitment by poly(A). These results demonstrate that polyadenylation can cause translational recruitment independent of ribose methylation. We propose that polyadenylation enhances translation through at least two mechanisms that are distinguished by their dependence on ribose modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号