首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
循环流化床锅炉的飞灰含碳量问题   总被引:20,自引:3,他引:20  
循环流化床锅炉的飞灰含碳量问题近年来受到关注。对实际运行的多台燃烧各种燃料的220t/h锅炉的飞灰样品测定表明:飞灰的含碳量具有明显的不均匀性。分析了煤质、分离器及运行条件对飞灰含碳量的影响。结果表明:循环流化床锅炉燃烧过程中焦炭反应性逐渐下降;焦炭燃烧过程中发生的爆裂、磨损、失活等行为与煤种有关,对循环流化床锅炉飞灰碳燃尽有很大影响。气固混和不均匀是导致较高的飞灰含碳量的原因之一。图7表2参13  相似文献   

2.
循环流化床锅炉飞灰中碳的形成机理   总被引:2,自引:1,他引:1  
通过对循环流化床(CFB)锅炉飞灰含碳量分布及飞灰残碳形态的测量、CFB燃烧温度下焦炭失活过程的试验研究以及流化床条件下煤颗粒燃烧过程的分析.探讨了循环流化床锅炉飞灰中碳的形成机理.结果表明:实际运行的CFB锅炉飞灰中含碳量具有明显的不均匀性,残碳集中于25~50 μm的飞灰颗粒内;真实密度和XRD测量均表明,焦炭失活的2个条件是温度和时间,温度高于800℃,焦炭失活开始发生,并且随着时间的增加,失活程度提高;焦炭颗粒长时间停留在主循环回路中,反应活性下降,由于颗粒的碎裂和磨耗,形成了飞灰中粒径较小的残碳;煤中的细小煤粒首次通过炉膛时未燃尽且未被分离器收集,形成了飞友中较大颗粒的残碳.  相似文献   

3.
不同煤种下循环流化床灰渣特性的试验研究   总被引:7,自引:1,他引:6  
在一台 0 .5MW的循环流化床燃烧炉上对 4种不同煤种分别进行燃烧试验 ,对燃烧产生的灰渣的分析结果表明了煤种特性如挥发分、灰分和含碳量等对循环流化床燃烧过程的灰渣形成及其排放特性有很大影响 ,并获得了煤中挥发分、灰分及含碳量对底渣粒径及其含碳量、飞灰粒径及其含碳量、飞灰份额及燃烧效率等影响特性 ,对循环流化床锅炉的设计和运行有一定的指导意义。  相似文献   

4.
介绍了煤指数、床压、床温、流化风量、总风量和一、二次风比例、燃煤粒径对循环流化床锅炉飞灰含碳量的影响,并以某电厂440t/h循环流化床锅炉降低飞灰含碳量的优化调整为例,通过正交试验分析各因素影响情况。试验表明:总风量对锅炉飞灰含碳量的影响相对较大,其次是流化风量,再次是床压。通过调整入炉煤粒径分布,进一步降低飞灰含碳量。试验表明燃煤粒度对锅炉飞灰含碳量影响较大。  相似文献   

5.
降低循环流化床锅炉飞灰含碳量的理论及其应用   总被引:7,自引:0,他引:7       下载免费PDF全文
首先从燃烧角度分析了影响循环流化床锅炉飞灰含碳量的主要因素,然后针对HG-465/13.7-L.PM7型循环流化床锅炉实际运行中存在的飞灰含碳量高的问题,根据理论分析并结合现场试验,分析得到了煤质及运行参数对飞灰含碳量的影响。利用试验结果指导运行,使该炉的飞灰含碳量由原来的18%降低到12%。  相似文献   

6.
循环流化床(CFB)燃烧技术是新一代高效低污染燃烧技术。河南省在建和立项的410t/h以上的CFB锅炉已10台。本文针对CFB锅炉运行中存在的问题如磨损、结焦、飞灰含碳量高等从设计环节入手进行了分析,并提出完善化措施,以期对CFB锅炉的运行提供一定的指导作用。  相似文献   

7.
介绍了20t/h循环流化床锅炉的调试的冷态试验,点火启动和运行调试情况,对该锅炉运行过程中存在的过热器超温,飞灰含碳量高以及冒黑烟等问题的原因进行了分析,并提出了相应的对策,对今后继续开发和使用循环流化床锅炉有一定的现实意义。  相似文献   

8.
降低循环流化床飞灰可燃物   总被引:9,自引:0,他引:9  
循环流化床锅炉具有高效、低污染、煤种适应性广等优点 ,在我国得到大力发展。但目前国内流化床锅炉普遍存在着飞灰含碳量高 ,锅炉燃烧效率达不到设计值的问题。概述了影响飞灰含碳量的主要因素如煤种、煤的粒径及循环系统运行状况等。在对现有流化床锅炉飞灰含碳量高的原因及存在的主要问题进行探讨的基础上 ,提出了降低飞灰含碳量 ,提高燃烧效率的一些途径。  相似文献   

9.
本文针对某135MW循环流化床锅炉含碳量偏高的问题,通过燃烧调整实验,分析不同运行条件下的飞灰特性。结果表明,飞灰含碳量随粒径呈峰值特征,其中19~67μm含碳量明显较高,属于较难燃尽的碳,是q4损失主要来源。在分析运行条件对飞灰含碳量影响的基础上,提出降低19~67μm段飞灰含碳量是降低循环流化床锅炉飞灰含碳量的主要途径。  相似文献   

10.
作者在一台20t/h循环流化床锅炉上进行了燃烧三种不同粒度分布的福建Ⅱ类无烟煤的工业实验,取得颗粒平均粒径与悬浮段颗粒浓度、飞灰含炭量以及悬浮段颗粒与炉膛温度等关系曲线。有关数据与结论对燃烧福建无烟煤的CFB锅炉的设计运行具有参考价值。 同时,作者对提高CFB锅炉热效率及降低飞灰含碳量提出了几点建议。  相似文献   

11.
该对目前75t/h循环流化床锅炉普遍存在的磨损、飞灰含碳量高及造成非正常停炉的因素进行了介绍,并从锅炉设计、锅炉选型、燃煤选择、运行控制等方面提出了解决上述问题的措施、办法及建议。  相似文献   

12.
对循环流化床锅炉中煤的燃烧过程简要地进行了分析,对导致飞灰含碳量偏高的因素进行了总结,并,从设计、运行方面对降低飞灰含碳量给出了建议。  相似文献   

13.
循环流化床锅炉热力计算方法探讨   总被引:1,自引:0,他引:1  
循环流化床锅炉与鼓泡流化床相比 ,有许多新的特点 ,床内的燃烧和受热面的传热过程很复杂。由循环倍率决定的颗粒浓度是循环流化床锅炉的一个重要参数 ,它对传热强度、燃烧与燃尽、过热器的汽温、负荷的调节范围以及分离器的设计等都产生重要影响。以 65t/h油页岩流化床锅炉的热力计算为例 ,从循环倍率入手 ,着重讨论了循环倍率以及由它决定的飞灰浓度对床内燃烧传热及过热器传热的影响  相似文献   

14.
宋永富 《锅炉制造》2011,(6):26-28,37
飞灰含碳量高是循环流化床锅炉燃烧效率低的主要原因,通过分析影响飞回含碳量的因素,得出降低飞灰含碳量的方法。  相似文献   

15.
循环流化床锅炉飞灰残碳的生成及其处理   总被引:1,自引:0,他引:1       下载免费PDF全文
循环流化床燃烧技术因其众多的优点得到广泛应用,但是在运行中普遍存在着飞灰含碳量远远高于预期的问题。影响飞灰含碳量的主要因素包括:煤指标、煤的结构和焦炭反应活性、给煤粒径以及循环流化床的结构和其它运行参数等。目前,降低飞灰含碳量的方法有:飞灰再循环、加强二次风刚性和调整床压降等。实验表明,在低风速条件下,可以将飞灰中的残碳充分燃尽。另外,高压静电分离和飞灰水活化团聚也都为飞灰残碳的利用提供了新思路。  相似文献   

16.
循环流化床锅炉飞灰含碳量高的原因及降低措施   总被引:3,自引:0,他引:3  
循环流化床锅炉具有高效、低污染、煤种适应性广等优点,但目前存在一个较为普遍的问题:飞灰含碳量高,锅炉燃烧效率达不到设计值。在对实例进行分析的基础上,探讨了煤的热值及煤的粒径、燃烧室水冷度、循环系统运行状况对飞灰含碳量的影响,提出了维持锅炉稳定燃烧,降低飞灰含碳量,提高燃烧效率的一些措施。  相似文献   

17.
某炼化企业自备电站410t/h掺烧石油焦循环流化床锅炉(简称CFB锅炉)飞灰含碳量高达15%以上,导致锅炉效率下降。通过对锅炉床层温度、一次及二次风量、过剩含氧量、床层压差、石灰石添加量等因素进行优化调整:当床温度为880~920℃之间时,飞灰含碳量降低效果较好,锅炉热效率提高;适当减小一次流化风量,增加二次风量在100~110t/h之间,有助于燃煤的充分燃烧,飞灰含碳量也相应降低;控制烟气含氧量在4.5%~5.5%范围内,床层压差在4.5~5.0kPa之间,对降低飞灰含碳量有明显作用;在保证脱硫效果的情况下适当减小炉内石灰石脱硫剂的使用量,也可降低飞灰含碳量。在运行中可根据飞灰含碳量的变化调整燃烧工况,维持床层温度、一二次风量、过剩含氧量、床层压差和石灰石添加量在合理范围内,以优化密相区和稀相区的燃烧份额,降低机械不完全燃烧热损失,有效降低锅炉飞灰可燃物至8%以下,可提高锅炉热效率0.5%。  相似文献   

18.
阐述星湖科技45 t/h循环流化床锅炉飞灰再循环燃烧的技改和改造后所取得的成效。通过在空气预热器后的烟道设置大型旋风分离器,将大颗粒烟尘捕捉分离,通过仓泵输送至炉前缓冲罐,使用螺旋输送机送入锅炉回燃。投入飞灰再循环燃烧,能够提高炉膛出口温度,降低飞灰含碳量,提高锅炉蒸发量,提高锅炉热效率。再循环燃烧系统技改费用投入为60多万元,改造后年节煤费用超过180多万元,效益显著。  相似文献   

19.
文中介绍了韶能集团下属耒阳综合利用发电厂飞灰再循环系统的设计方案和运行状况。运行结果显示:飞灰再循环技术显著降低了燃用无烟煤的循环流化床锅炉飞灰含碳量、提高锅炉燃烧效率,节能降耗效果显著。  相似文献   

20.
笔者由于工作需要,最近就35t/h循环流化床锅炉在国内的发展状况(包括设计、制造、安装、运行)等作了一次较为系统的调查。现简介如下,并就这类锅炉的研制及运用谈一点看法。一、循环流化床锅炉简介循环流化床燃烧技术是80年代发展起来的一项新型技术,它是在第一代沸腾炉的基础上,为克服其飞灰含量高、燃烧效率低、埋管受热面磨损严重、脱硫剂的利用率低等缺点而开发的,因而也称作第二代沸腾炉。国家计委将35t/h循环流化床发电锅炉列入了国家“七五”科技攻关项目,由中国科学院、中国统配煤矿总公司、济南锅炉厂、明水热电厂等单位共同承担。第一台35t/h循环流化床锅炉1987年安装在山东明水热电厂,1989年通过了部级技术鉴定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号