共查询到15条相似文献,搜索用时 68 毫秒
1.
一种协同的FCPM模糊聚类算法 总被引:1,自引:0,他引:1
比重隶属度模糊聚类(FCPM)算法可从不同角度解决聚类问题,取得较好效果。协同聚类算法利用不同特征子集之间的协同关系,并与其它聚类算法相结合,可提高原有的聚类性能。文中在FCPM聚类算法的基础上进行改进,将其与协同聚类算法相结合,提出一种协同的FCPM聚类算法。该算法在原有FCPM聚类算法的基础上,提高对数据集的聚类效果。在对数据集Wine和Iris进行测试的结果表明,该方法优于FCPM算法,说明该方法的有效性。 相似文献
2.
在对Web站点进行优化时,为了降低成本,往往需要在不改变硬件和网络配置的情况下提高网站的性能.此时,对构成网站的网页的修改就成为提高站点性能的主要途径.对网页的访问速度的测量已有很多成熟的方法,但是如何根据测试的结果指定合理的优化策略,却鲜有论述.本文使用FCM算法对测试结果和网站日志进行聚类分析,从而得到一个良好的优化策略. 相似文献
3.
基于模糊C均值(FCM)和局部自适应聚类(LAC)提出一种针对高维数据的联机局部自适应模糊C均值聚类算法(OLAFCM).OLAFCM通过为各类属性分别赋以相应的局部权重,使各类属性分布在不同属性组合的张量子空间内,从而有效降低采用全局降维方法造成的信息损失,同时适合聚类数据流.最后,在人工模拟和真实数据集上验证OLAFCM比之现有基于全局降维的划分联机聚类算法具有更好的性能. 相似文献
4.
模糊C均值( FCM)聚类算法最终形成的聚类质量会受到初始值的设定、簇的个数选定及参数选择等多方面因素的影响。文中对最近发表的5种代表性聚类有效性指数在不同的数据维数、聚类个数和参数等条件下对FCM的聚类有效性评价结果进行对比分析。实验结果表明基于类内紧致度和类间离散度比值的聚类有效性指数对数据维度及噪声较为鲁棒,基于隶属度的聚类有效性指数不适于高维数据等,上述结果可帮助研究人员在不同的应用环境下选择合适的模糊聚类有效性函数。 相似文献
5.
基于模糊C均值(FCM)聚类算法,并利用遗传算法全局随机搜索的特点,提出了一种图像分割的改进遗传算法。该算法首先采用一种初值化算法确定合适的遗传算法的初始搜索范围,然后对遗传算法中的编码方式、交叉算子、变异算子等参数进行了一些适当改进,进而给出了该算法的理论推导和算法的具体实现步骤。该算法除了解决模糊C均值聚类算法在医学图像分割中容易陷入局部最优解的问题,而且采用的初值化算法比标准的遗传模糊C均值聚类算法能确定更合适的遗传算法的初始搜索范围,从而加速了遗传算法的收敛过程。实验表明,该方法相对于标准的遗传模糊C均值聚类算法,效果要好得多。 相似文献
6.
FCM算法是目前广泛使用的算法之一。,针对FCM聚类质量和收敛速度依赖于初始聚类中心的问题,结合Canopy聚类算法能够粗略快速地对数据集进行聚类的优点,提出了一种基于Canopy聚类的FCM算法。该算法通过将Canopy算法快速获取到的聚类中心作为FCM算法的输入来加快FCM算法收敛速度。并在云环境下设计了其MapReduce化方案,实验结果表明,MapReduce化的基于Canopy聚类的FCM算法比MapReduce化的FCM聚类算法具有更好的聚类质量和运行速度。 相似文献
7.
模糊C均值(FCM)聚类算法广泛应用于图像的自动分割,但标准的FCM算法存在计算量大,运算速度慢等问题。对FCM算法进行改进,提出了一种快速FCM图像分割算法(FFCM),该算法将图像从像素空间映射到其灰度直方图特征空间,并在此基础上,充分利用像素的邻域特性,对隶属度函数做一定改进,实验结果表明该算法能快速有效地分割图像,并具有较好的抗噪能力。 相似文献
8.
针对织物染色配色过程中的复杂性和非线性问题,提出一种基于聚类的BP神经网络织物染色配色方法.通过模糊C均值聚类方法对初始样本集进行预处理,然后构建结构合理的BP神经网络对处理后的样本集进行训练和仿真.实验结果验证该方法与传统的BP神经网络相比能明显提高网络的收敛速度和泛化能力,能较准确地实现对织物染色配方的预测. 相似文献
9.
一种协同的可能性模糊聚类算法 总被引:1,自引:0,他引:1
模糊C-均值聚类(FCM)对噪声数据敏感和可能性C-均值聚类(PCM)对初始中心非常敏感易导致一致性聚类。协同聚类算法利用不同特征子集之间的协同关系并与其他算法相结合,可提高原有的聚类性能。对此,在可能性C-均值聚类算法(PCM)基础上将其与协同聚类算法相结合,提出一种协同的可能性C-均值模糊聚类算法(C-FCM)。该算法在改进的PCM的基础上,提高了对数据集的聚类效果。在对数据集Wine和Iris进行测试的结果表明,该方法优于PCM算法,说明该算法的有效性。 相似文献
10.
使用支撑集和模糊待分集的概念来描述数据集的分布,在此基础上提出了一种区域型模糊聚类算法———re-gionalfuzzyclusteringalgorithm。仿真结果表明该算法有比常用的模糊C均值更好的聚类性能。 相似文献
11.
一种改进的聚类算法及其在说话人识别上的应用 总被引:3,自引:5,他引:3
目前应用最广泛的模糊聚类算法是基于目标函数的模糊k-均值算法.针对该算法存在的缺点。本文提出一种改进的聚类算法.利用遗传算法的全局优化的特点,在能够在正确获得未知对象的聚类中心数目的同时.克服模糊k-均值算法对初始中心点影响的缺陷。将该聚类算法用于确定EBF(椭圆基函数)网络的隐层节点和中心值等参数,在不依赖文本的话者确认实验中.获得了较好的识别效果。 相似文献
12.
提出一种基于差分算法的聚类分析方法,采用结构体数组对聚类的中心进行编码,并用样本向量与相应聚类中心的欧氏距离的和来判断聚类划分的质量,通过变异、交叉和选择操作对聚类中心的编码进行优化,以获得最好的聚类中心.通过差分算法的全局搜索能力,来获取全局最优结果.实验结果显示,该方法的聚类划分效果明显优于传统的K-均值方法,也一般优于基于遗传算法的聚类算法和基于微粒群的聚类算法. 相似文献
13.
14.
15.
以K-means和模糊C均值为代表的划分式聚类算法无法有效处理按照风格为标准划分样本的聚类任务.针对此问题,文中提出按风格划分数据的模糊聚类算法.利用风格标准化矩阵表示包含在类簇中样本的风格信息,同时使用逼近标准风格之后的样本计算距离矩阵,并以隶属度表示样本点对于类簇的可代表程度.通过常用的交替优化策略同时优化隶属度矩阵和风格标准化矩阵.文中算法可以有效利用样本的风格信息和样本点与类簇之间的关系信息,在人工数据集和真实数据集上的实验表明算法的有效性. 相似文献