首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 694 毫秒
1.
Miao W  Bard AJ 《Analytical chemistry》2004,76(23):7109-7113
Biotinylated anti-C-reactive protein (CRP) species were attached to the surface of streptavidin-coated magnetic beads (MB) and avidin-coated polystyrene microspheres/beads (PSB) entrapping a large number of electrogenerated chemiluminescence (ECL) labels ( approximately 10(9) Ru(bpy)(3)[B(C(6)F(5))(4)](2)/bead) to form anti-CRP<-->MB and Ru(II) subsetPSB/avidin<-->anti-CRP conjugates, respectively. Sandwich-type Ru(II) subsetPSB/avidin<-->anti-CRP CRP anti-CRP<-->MB aggregates were formed when Ru(II) subsetPSB/avidin<-->anti-CRP was mixed with anti-CRP<-->MB conjugates in the presence of analyte CRP. The newly formed aggregates were magnetically separated from the reaction media and dissolved in MeCN containing tri-n-propylamine as an ECL coreactant. ECL was carried out with a potential scan from 0 to 2.8 V vs Ag/Ag(+), and the ECL intensity was found to be proportional to the analyte CRP concentration over the range of 0.010-10 mug/mL. The CRP concentration of an unknown human plasma specimen was measured by the standard addition method based on this technique. Elimination of the nonspecific adsorption of the CRP system with several different blocking agents was also studied, and 2.0% bovine serum albumin was found to be best.  相似文献   

2.
Liposomes ( approximately 100-nm diameter) containing Ru(bpy)32+ (bpy = 2,2'-bipyridine) were prepared as an electrogenerated chemiluminescent (ECL) tag for a sandwich-type immunoassay of human C-reactive protein (CRP). Polyclonal human CRP antibodies were introduced onto liposomes and magnetic beads through biotin-streptavidin interaction. The antigen-antibody conjugates formed on addition of a CRP-containing sample were separated from unreacted species magnetically. Addition of 0.1 M tri-n-propylamine and 0.1 M phosphate buffer (pH 7.6) containing 0.1 M NaCl and 1% (v/v) Triton X-100 caused liberation of the Ru(bpy)32+ from the liposome. ECL obtained in this medium showed a detection limit of 100 ng/mL for human CRP with good linearity of ECL intensity versus antigen concentration over the range 100 ng/mL-10 microg/mL.  相似文献   

3.
Miao W  Bard AJ 《Analytical chemistry》2003,75(21):5825-5834
Anodic electrogenerated chemiluminescence (ECL) with tri-n-propylamine (TPrA) as a coreactant was used to determine DNA and C-reactive protein (CRP) by immobilizations on Au(111) electrodes using tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) labels. A 23-mer synthetic single-stranded (ss) DNA derived from the Bacillus anthracis with an amino-modified group at the 5' end position was covalently attached to the Au(111) substrate precoated with a self-assembled thiol monolayer of 3-mercaptopropanoic acid (3-MPA) in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAC) and then hybridized with a target ssDNA tagged with Ru(bpy)(3)(2+) ECL labels. Similarly, biotinylated anti-CRP species were immobilized effectively onto the Au(111) substrate precovered with a layer of avidin linked covalently via the reaction between avidin and a mixed thiol monolayer of 3-MPA and 16-mercaptohexadecanoic acid on Au(111) in the presence of EDAC and N-hydroxysuccinimide. CRP and anti-CRP tagged with Ru(bpy)(3)(2+) labels were then conjugated to the surface layer. ECL responses were generated from the modified electrodes described above by immersing them in a TPrA-containing electrolyte solution. A series of electrode treatments, including blocking free -COOH groups with ethanol amine, pinhole blocking with bovine serum albumin, washing with EDTA/NaCl/Tris buffer, and spraying with inert gases, were used to reduce the nonspecific adsorption of the labeled species. The ECL peak intensity was linearly proportional to the analyte CRP concentration over the range 1-24 microg/mL. CRP concentrations of two unknown human plasma/serum specimens were measured by the standard addition method based on this technique.  相似文献   

4.
Ultrasensitive bioanalytical assays are of great value for early detection of human diseases and pathogens. The sensitivities of immunoassays and DNA probing can be enhanced by multilabeling the biorecognition partner used for affinity-based assays. However, the bioreactivity of biomolecules is affected by a high degree of multilabeling at multiple functional sites. It is proposed that dendritic scaffoldings be used to link multiple signal-generating units to a single site with potentially minimum impact on the bioaffinity. A prototype label, a zeroth-generation dendron, bearing three [Ru(bpy)(3)](2+) units for electrochemiluminescence (ECL) assays was synthesized and characterized preliminarily by spectroscopic, electrochemical, and ECL methods. No evidence of interaction between the neighboring [Ru(bpy)(3)](2+) units in the label molecule was found from these characterizations. Both the photoluminescence and ECL of the prototype label have features very similar to those of mononuclear [Ru(bpy)(3)](2+) compounds. Labeling a model protein with a triad of [Ru(bpy)(3)](2+) at one NH(2) position was demonstrated. The results reported here provide support to applying the proposed multilabeling strategy to affinity-based bioanalytical assays.  相似文献   

5.
Arrays suitable for genotoxicity screening are reported that generate metabolites from cytochrome P450 enzymes (CYPs) in thin-film spots. Array spots containing DNA, various human cyt P450s, and electrochemiluminescence (ECL) generating metallopolymer [Ru(bpy)2PVP10]2+ were exposed to H2O2 to activate the enzymes. ECL from all spots was visualized simultaneously using a CCD camera. Using benzo[a]pyrene as a test substrate, enzyme activity for producing DNA damage in the arrays was found in the order CYP1B1 > CYP1A2 > CYP1A1 > CYP2E1 > myoglobin, the same as the order of their metabolic activity. Thus, these arrays estimate the relative propensity of different enzymes to produce genotoxic metabolites. This is the first demonstration of ECL arrays for high-throughput in vitro genotoxicity screening.  相似文献   

6.
The electrochemistry and electrogenerated chemiluminescence (ECL) of Ru(bpy)3(2+) (bpy = 2,2'-bipyridyl) were studied in the presence of the nonionic surfactants Triton X-100, Thesit, and Nonidet P40. The anodic oxidation of Ru(bpy)3(2+) produces ECL in the presence of tri-n-propylamine in both aqueous and surfactant solutions. Increases in both ECL efficiency (> or =8-fold) and duration of the ECL signal were observed in surfactant media. A shift to lower energies of the Ru(bpy)3(2+) ECL emission by approximately 8 nm was also observed. The one-electron oxidation of Ru(bpy)3(2+) to Ru(bpy)3(3t) occurs at + 1.03 V vs Ag/AgCl in aqueous buffered (0.2 M potassium phosphate) solution as found by square wave voltammetry. This potential did not shift in surfactant systems, indicating that the redshifts in ECL emission are due to stabilization of ligand pi* orbitals in the metal-to-ligand charge-transfer excited state. These results are consistent with hydrophobic interactions between Ru(bpy)3(2+) and the nonionic surfactants.  相似文献   

7.
A simple procedure to incorporate tris(2-2'-bipyridyl)ruthenium(II), [Ru(bpy)3]2+, into Nafion Langmuir-Schaefer (LS) films is described. Nafion LS films (tens of nanometers thick) were formed on quartz glass and indium tin oxide (ITO) directly from Nafion-[Ru(bpy)3]2+ Langmuir films assembled at the water-air interface. This procedure allowed the direct incorporation of [Ru(bpy)3]2+ into Nafion films without the need for subsequent loading. UV-vis spectroscopy confirmed the successful incorporation of [Ru(bpy)3]2+ within the LS films and showed that the amount of [Ru(bpy)3]2+ immobilized in this way scaled with film thickness. Voltammetric studies on ITO-modified electrodes confirmed the successful incorporation of [Ru(bpy)3]2+ and demonstrated that [Ru(bpy)3]2+ was retained within the ultrathin films over a long time scale. These electrodes were tested for the electrocatalytic reduction of tripropylamine. Significant catalysis was observed due to the rapid turnover of [Ru(bpy)3]2+/3+ between the electrode surface and outer boundary of the film, as a direct consequence of the ultrathin film dimensions. Concomitant electrochemiluminescence (ECL) was demonstrated highlighting the potential of this material for sensing applications.  相似文献   

8.
The electrochemistry, UV-vis absorption, photoluminescence (PL), and coreactant electrogenerated chemiluminescence (ECL) of Ru(bpy)3(2+) (where bpy=2,2'-bipyridine) have been obtained in a series of hydroxylic solvents. The solvents included fluorinated and nonfluorinated alcohols and alcohol/water mixtures. Tri-n-propylamine was used as the oxidative-reductive ECL coreactant. Blue shifts of up to 30 nm in PL emission wavelength maximums are observed compared to a Ru(bpy)3(2+)/H2O standard due to interactions of the polar excited state (i.e., *Ru(bpy)3(2+)) with the solvent media. For example, Ru(bpy)3(2+) in water has an emission maximum of 599 nm while in the more polar hexafluoropropanol and trifluoroethanol it is 562 and 571 nm, respectively. ECL spectra are similar to PL spectra, indicating the same excited state is formed in both experiments. The difference between the electrochemically reversible oxidation (Ru(bpy)3(2+/3+)) and first reduction (Ru(bpy)2(2+/1+)) correlates well with the energy gap observed in the luminescence experiments. Although the ECL is linear in all solvents with [Ru(bpy)3(2+)] ranging from 100 to 0.1 nm, little correlation between the polarity of the solvent and the ECL efficiency (phiecl=number of photons per redox event) was observed. However, dramatic increases in phiecl ranging from 6- to 270-fold were seen in mixed alcohol/water solutions.  相似文献   

9.
The effect of surface confinement on the electrochemiluminescence (ECL) properties of metallopolymer [Ru(bpy)2(PVP)10]2+, where bpy is 2,2'-bipyridyl and PVP is poly(4-vinylpyridine), is reported. Immobilizing a luminescent material on an electrode surface can substantially modulate its photophysical properties. Significantly, our study revealed that the overall efficiency of the ECL reaction for the metallopolymer film is almost four times higher, at 0.15%, than the highest value obtained for [Ru(bpy)2(PVP)10]2+ dissolved in solution, (phi(ECL) = 0.04%). Electrochemistry has been used to create well-defined concentrations of the quencher Ru3+ within the film. Analysis of both the steady-state luminescence and lifetimes of the film reveals that static quenching by electron transfer between the photoexcited Ru2+ and the Ru3+ centers is the dominant quenching mechanism. The bimolecular rate of electron transfer is (2.5 +/- 0.4) x 10(6) M(-1) s(-1). The implications of these findings for ECL-based sensors, in terms of optimum luminophore loading, is considered.  相似文献   

10.
An array of electrode tips with 6-microm center-to-center spacing, fabricated through chemical etching of an optical fiber bundle, and coated with gold, was used for initiating electrochemiluminescence (ECL) in an aqueous solution of Ru(bpy)3(2+) and tri-n-propylamine (TPrA). ECL generated at the tips of the electrodes in the array was detected with a CCD camera and exhibited both high sensitivity and high resolution. In the case in which the ECL signal could not be distinguished from the background, ECL signals could be obtained by pulsing the array and summing multiple CCD images. The behavior of this array was compared to a second array that consisted of individual electrodes insulated with an electrophoretic paint.  相似文献   

11.
The effects of nonionic surfactant chain length on the properties of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3(2+) where bpy = 2,2'-bipyridine) electrochemiluminescence (ECL) have been investigated. The electrochemistry, photophysics, and ECL of Ru(bpy)3(2+) in the presence of a series of nonionic surfactants are reported (Triton X-100, 114, 165, 405, 305, and 705-70). These surfactants differ in the number of poly(ethylene oxide) units incorporated into the surfactant molecule. The anodic oxidation of Ru(bpy)3(2+) produces ECL in the presence of tri-n-propylamine (TPrA) in aqueous surfactant solution. Increases in ECL efficiency (> or = 5-fold) and TPrA oxidation current (> or = 2-fold) have been observed in surfactant media. Slight decreases in ECL intensity are observed as the chain length of the nonionic surfactant increases. The data supports adsorption of surfactant on the electrode surface, thus facilitating TPrA and Ru(bpy)3(2+) oxidation and leading to higher ECL efficiencies.  相似文献   

12.
The unique electrochemiluminescence (ECL) behavior of tris(bipyridine) ruthenium(II) (Ru(bpy)32+) immobilized in a gold/Nafion/Ru(bpy)32+ composite material was investigated. In this composite, the Ru(bpy)32+ ECL was found mainly occurred at 0-0.4 V during the cathodic scan process and the ECL peak was at about 0.1 V, which was quite different to the reported Ru(bpy)32+ ECL. Similar to the generally observed Ru(bpy)32+ ECL, the present ECL also could be enhanced by tri-n-propylamine (TPA). It is also unique that in the presence of TPA, another ECL peak at about 0.38 V occurred. These two ECL peak potentials all could be used as characteristic potential for the ECL determination of TPA.  相似文献   

13.
This paper describes fabrication of a novel electrochemiluminescence (ECL) immunosensor array featuring capture-antibody-decorated single-wall carbon nanotube (SWCNT) forests residing in the bottoms of 10-μL wells with hydrophobic polymer walls. Silica nanoparticles containing [Ru(bpy)(3)](2+) and secondary antibodies (RuBPY-silica-Ab(2)) are employed in this system for highly sensitive two-analyte detection. Antibodies to prostate specific antigen (PSA) and interleukin-6 (IL-6) were attached to the same RuBPY-silica-Ab(2) particle. The array was fabricated by forming the wells on a conductive pyrolytic graphite chip (1 in. × 1 in.) with a single connection to a potentiostat to achieve ECL. The sandwich immunoassay protocol employs antibodies attached to SWCNTs in the wells to capture analyte proteins. Then RuBPY-silica-Ab(2) is added to bind to the captured proteins. ECL is initiated in the microwells by electrochemical oxidation of tripropyl amine (TprA), which generates excited state [Ru(bpy)(3)](2+) in the 100-nm particles, and is measured with a charge-coupled device (CCD) camera. Separation of the analytical spots by the hydrophobic wall barriers enabled simultaneous immunoassays for two proteins in a single sample without cross-contamination. The detection limit (DL) for PSA was 1 pg mL(-1) and for IL-6 was 0.25 pg mL(-1) (IL-6) in serum. Array determinations of PSA and IL-6 in patient serum were well-correlated with single-protein ELISAs. These microwell SWCNT immunoarrays provide a simple, sensitive approach to the detection of two or more proteins.  相似文献   

14.
Chi Y  Dong Y  Chen G 《Analytical chemistry》2007,79(12):4521-4528
Electrochemiluminescence (ECL) has been accepted by the analytical chemist as a powerful tool for detection of many inorganic and organic compounds. Ru(bpy)3 2+ has been the most popular ECL system, and many investigations have been focused on the application based on the enhancement or inhibition of Ru(bpy)3 2+ ECL system. However, not much attention has been paid to the theoretical investigation of this ECL system, especially to the inhibiting mechanism for the Ru(bpy)3 2+ ECL system. In the present study, many of the inorganic and organic compounds with electrochemical oxidation activity were found to strongly inhibit Ru(bpy)3 2+ ECL. To explain these inhibited ECL phenomena, a new "electrochemical oxidation inhibiting" mechanism has been proposed via the establishment of a corresponding model. The effects of applied potential, uncompensated resistance, and concentration of inhibitor on the inhibited ECL derived from the model have been verified by experiments. The new ECL inhibition mechanism can be commonly used to explain many kinds of inhibited ECL presently observed, and it is envisioned to result in finding of more inhibitors of this type and establishment of new sensitive ECL detection methods for them.  相似文献   

15.
Choi HN  Cho SH  Lee WY 《Analytical chemistry》2003,75(16):4250-4256
Electrochemical behavior and electrogenerated chemiluminescence (ECL) of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3(2+)) immobilized in sol-gel-derived titania TiO2)-Nafion composite films coated on a glassy carbon electrode have been investigated. The electroactivity of Ru(bpy)3(2+) ion exchanged into the composite films and its ECL behavior were strongly dependent upon the amount of Nafion incorporated into the TiO2-Nafion composite films. The ECL sensor of Ru(bpy)32+ immobilized in a TiO2-Nafion composite with 50% Nafion content showed the maximum ECL intensities for both tripropylamine (TPA) and sodium oxalate in 0.05 M phosphate buffer solution at pH 7. Detection limits were 0.1 microM for TPA and 1.0 microM for oxalate (S/N = 3) with a linear range of 3 orders of magnitude in concentration. The present ECL sensor showed improved ECL sensitivity and long-term stability, as compared to the ECL sensors based on pure Nafion films. The present Ru(bpy)3(2+) ECL sensor based on TiO2-Nafion (50%) composite films was applied as an HPLC detector for the determination of erythromycin in human urine samples. The present Ru(bpy)3(2+) ECL sensor was stable in the mobile phase containing a high content of organic solvent (30%, v/v), in contrast to a pure Nafion-based Ru(bpy)3(2+) ECL sensor. The detection limit for erythromycin was 1.0 microM, with a linear range of 3 orders of magnitude in concentration.  相似文献   

16.
The application of thin films of the metallopolymer [Ru(bpy)2PVP10]2+ for the electrochemiluminescent (ECL) detection of oxalate in a flow injection analysis system is reported, where bpy is 2,2'-bipyridyl and PVP is poly(4-vinylpyridine). Immobilization of the ECL reagent means that it can be regenerated in situ, eliminating the need to constantly deliver it to the reaction zone. Electrochemically generated Ru3+ reacts with the analyte to form the excited-state [Ru2+]*, which luminesces at 610 nm. The reaction is optimal at low pH, where the layer is swollen and homogeneous charge transport through the layer is more facile. Unlike traditional approaches, we simultaneously monitor both the amperometric and luminescent response of the modified electrode. The precision of both signals is similar at approximately 2% (n = 10). However, the ECL response has a larger dynamic range extending from the low-micromolar to high-millimolar range and a lower limit of detection, approximately 0.2 microM or 4 pmol of oxalate injected. The ECL approach displays excellent selectivity for oxalate over a wide range of potential interferences including oxygen, amines, iron sulfate, ammonium nitrate, urea, and glucose. Ascorbic acid represents the most significant ECL interference. However, the signal observed for a 1 mM solution of ascorbic acid is still only 2.6% of the response observed for the injection of a similar concentration of oxalate.  相似文献   

17.
Zhang L  Dong S 《Analytical chemistry》2006,78(14):5119-5123
A novel electrogenerated chemiluminescence (ECL) sensor based on Ru(bpy)3(2+)-doped silica (RuDS) nanoparticles conjugated with a biopolymer chitosan membrane was developed. These uniform RuDS nanoparticles (approximately 40 nm) were prepared by a water-in-oil microemulsion method and were characterized by electrochemical and transmission electron microscopy technology. The Ru(bpy)3(2+)-doped interior maintained its high ECL efficiency, while the exterior nanosilica prevented the luminophor from leaching out into the aqueous solution due to the electrostatic interaction. This is the first attempt to branch out the application of RuDS nanoparticles into the field of ECL, and since a large amount of Ru(bpy)3(2+) was immobilized three-dimensionally on the electrode, the Ru(bpy)3(2+) ECL signal could be enhanced greatly, which finally resulted in the increased sensitivity. This sensor shows a detection limit of 2.8 nM for tripropylamine, which is 3 orders of magnitude lower than that observed at a Nafion-based ECL sensor. Furthermore, the present ECL sensor displays outstanding long-term stability.  相似文献   

18.
This paper describes a new approach for sensing electrochemically active substrates in microfluidic systems. This two-electrode sensor relies on electrochemical detection at one electrode and electrogenerated chemiluminescent (ECL) reporting at the other. Each microfabricated indium tin oxide electrode is located in a separate microfluidic channel, but the channels are connected downstream of the electrodes to maintain a complete electrical circuit. Because of laminar flow, there is no bulk mixing of the fluids in the detecting and reporting channels. This approach allows the ECL reaction to be physically and chemically decoupled from the sensing channel of the device, which greatly expands the number of analytes that can be detected. However, because the cathode and anode are connected, electron-transfer processes occurring at the sensing electrode are electrically coupled to the ECL reaction. Charge balance permits the ECL light output to be quantitatively correlated to electrochemical reductions at the cathode. The system is used to detect Fe(CN)6(3-), Ru(NH3)6(3+), and benzyl viologen and report their presence via Ru(bpy)3(2+) (bpy = bipyridine) luminescence. Each different redox target initiates ECL at a unique potential bias related to its standard redox potential. The influence of the concentrations of Ru(bpy)3(2+) and the target analytes is discussed.  相似文献   

19.
利用二氧化锰(MnO2)纳米材料新颖的化学、物理特性,研究其对三联吡啶钌(Ru(bpy)3^2+的电致化学发光(ECL)的催化作用,结果发现,纳米MnO2材料在温和的条件且较正的电位(+O.4V(VS.Ag/AgCl))下可以催化Ru(bpy)33^2+产生阴极ECL。同时推导了其催化机理,为制备一种新型的高灵敏度的ECLSensor奠定了理论基础。  相似文献   

20.
Zu Y  Bard AJ 《Analytical chemistry》2001,73(16):3960-3964
We describe the effect of electrode surface hydrophobicity on the electrochemical behavior and electrogenerated chemiluminescence (ECL) of Ru(bpy)3(2+) (bpy = 2,2'-bipyridyl)/tripropylamine (TPrA) system. Gold and platinum electrodes were modified with different thiol monolayers. The hydrophobicity of the electrode surfaces changed with different terminal groups of the thiol molecules. The oxidation rate of TPrA was found to be much larger at the modified electrode with a more hydrophobic surface. The adsorption of neutral TPrA species on this kind of surface was assumed to contribute to the faster anodic kinetics. Due to the rapid generation of the highly reducing radical, TPrA., ECL intensity increased significantly at more hydrophobic electrodes. This electrode surface effect in the ECL analytical system allows one to improve the detection sensitivity at low concentrations of Ru(bpy)3(2+). The surfactant effect on the ECL process was also examined and discussed based on the change of electrode hydrophobicity by the adsorption of surfactant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号