首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Systematic technology transfer from biology to engineering   总被引:6,自引:0,他引:6  
Solutions to problems move only very slowly between different disciplines. Transfer can be greatly speeded up with suitable abstraction and classification of problems. Russian researchers working on the TRIZ (Teoriya Resheniya Izobretatelskikh Zadatch) method for inventive problem solving have identified systematic means of transferring knowledge between different scientific and engineering disciplines. With over 1500 person years of effort behind it, TRIZ represents the biggest study of human creativity ever conducted, whose aim has been to establish a system into which all known solutions can be placed, classified in terms of function. At present, the functional classification structure covers nearly 3 000 000 of the world's successful patents and large proportions of the known physical, chemical and mathematical knowledge-base. Additional tools are the identification of factors which prevent the attainment of new technology, leading directly to a system of inventive principles which will resolve the impasse, a series of evolutionary trends of development, and to a system of methods for effecting change in a system (Su-fields). As yet, the database contains little biological knowledge despite early recognition by the instigator of TRIZ (Genrich Altshuller) that one day it should. This is illustrated by natural systems evolved for thermal stability and the maintenance of cleanliness.  相似文献   

3.
4.
Blindfolded or disoriented people have the tendency to walk in circles rather than on a straight line even if they wanted to. Here, we use a minimalistic walking model to examine this phenomenon. The bipedal spring-loaded inverted pendulum exhibits asymptotically stable gaits with centre of mass (CoM) dynamics and ground reaction forces similar to human walking in the sagittal plane. We extend this model into three dimensions, and show that stable walking patterns persist if the leg is aligned with respect to the body (here: CoM velocity) instead of a world reference frame. Further, we demonstrate that asymmetric leg configurations, which are common in humans, will typically lead to walking in circles. The diameter of these circles depends strongly on parameter configuration, but is in line with empirical data from human walkers. Simulation results suggest that walking radius and especially direction of rotation are highly dependent on leg configuration and walking velocity, which explains inconsistent veering behaviour in repeated trials in human data. Finally, we discuss the relation between findings in the model and implications for human walking.  相似文献   

5.
6.
我学习设计完全是机缘巧合。高考时志愿书上填物理系,后来差点分,北邮的老师找到我说他们还有两个专业我可以选择。我选了工业设计系,这样就稀里糊涂的进了设计行业。  相似文献   

7.
A summary of photo- and electrochemical surface modifications applied on single-crystalline chemical vapour deposition diamond films is given. The covalently bonded formation of amine and phenyl linker molecular layers is characterized using X-ray photoelectron spectroscopy, atomic force microscopy (AFM), cyclic voltammetry and field-effect transistor characterization experiments. Amine and phenyl layers are very different with respect to formation, growth, thickness and molecular arrangement. We deduce a sub-monolayer of amine linker molecules on diamond with approximately 10% coverage of 1.510(15) cm(-2) carbon bonds. Amine is bonded only on initially H-terminated surface areas. In the case of electrochemical deposition of phenyl layers, multilayer properties are detected with three-dimensional nitrophenyl growth properties. This leads to the formation of typically 25 A thick layers. The electrochemical bonding to boron-doped diamond works on H-terminated and oxidized surfaces. After reacting such films with heterobifunctional cross-linker molecules, thiol-modified ss-DNA markers are bonded to the organic system. Application of fluorescence and AFM on hybridized DNA films shows dense arrangements with densities up to 10(13) cm(-2). The DNA is tilted by an angle of approximately 35 degrees with respect to the diamond surface. Shortening the bonding time of thiol-modified ss-DNA to 10 min causes a decrease in DNA density to approximately 10(12) cm(-2). Application of AFM scratching experiments shows threshold removal forces of approximately 75 and 45 nN for the DNA bonded to the phenyl and the amine linker molecules, respectively. First, DNA sensor applications using Fe(CN6) 3-/4- mediator redox molecules and DNA field-effect transistor devices are introduced and discussed.  相似文献   

8.
9.
10.
Proteins, through their unique and specific interactions with other macromolecules and inorganics, control structures and functions of all biological hard and soft tissues in organisms. Molecular biomimetics is an emerging field in which hybrid technologies are developed by using the tools of molecular biology and nanotechnology. Taking lessons from biology, polypeptides can now be genetically engineered to specifically bind to selected inorganic compounds for applications in nano- and biotechnology. This review discusses combinatorial biological protocols, that is, bacterial cell surface and phage-display technologies, in the selection of short sequences that have affinity to (noble) metals, semiconducting oxides and other technological compounds. These genetically engineered proteins for inorganics (GEPIs) can be used in the assembly of functional nanostructures. Based on the three fundamental principles of molecular recognition, self-assembly and DNA manipulation, we highlight successful uses of GEPI in nanotechnology.  相似文献   

11.
Microbeams have undergone a renaissance since their introduction and early use in the mid-60s. Recent advances in imaging, software and beam delivery have allowed rapid technological developments in microbeams for use in a range of experimental studies. Microbeams allow the effects of single radiation tracks to be determined in a highly quantified way. They offer a unique tool for following DNA damage and repair in a highly controlled way. More importantly, they allow radiation to be targeted to specific regions within a cell to probe subcellular radiosensitivity. They are also playing an important role in our understanding of bystander responses, where cells not directly irradiated can respond to irradiated neighbours. Although these processes have been studied using a range of experimental approaches, microbeams offer a unique route by which bystander responses can be elucidated. Without exception, all of the microbeams currently active have studied bystander responses in a range of cell and tissue models. Together, these studies have considerably advanced our knowledge of the underpinning mechanisms. Much of this has come from charged particle microbeam studies, but increasingly, X-ray and electron microbeams are starting to contribute quantitative and mechanistic information on bystander effects. A recent development has been the move from studies with 2-D cell culture models to more complex 3-D systems where the possibilities of utilising the unique characteristics of microbeams in terms of their spatial and temporal delivery will make a major impact.  相似文献   

12.
基于PCR的染色体步行技术   总被引:4,自引:0,他引:4  
韩志勇  沈革志 《高技术通讯》2000,10(11):102-105,110
综述了近年来基于PCR的染色体步行技术的发展情况,介绍了利用载体或接头,利用随机引物,利用引物错配和环状PCR等几类具有代表性的基于PCR的染色体步行技术。  相似文献   

13.
Biomorphic mineralization: From biology to materials   总被引:4,自引:0,他引:4  
Since material properties are structure-dependent, new and interesting properties are expected from unusual or complex structures. Biomorphic mineralization is a technique that produces materials with morphologies and structures resembling those of nature living things, through employing bio-structures as templates for mineralization. The products, biomorphic materials, combine natural geometry with synthetic material chemistry. Fundamental information along with recent advances in biomorphic mineralization and biomorphic materials are provided in this review through discussions on the following aspects: biomorphic materials produced through synthesis or assembly using a range of templates including biomolecules, microorganisms, plants and animals; processing methods and mechanisms of biomorphic mineralization; properties and emerging applications of biomorphic materials in multiple areas including electronics, magnetics, photonics, biotech, sensing, and filtration. The potential of various natural structures for biomimicking to produce advanced materials will be also discussed. We conclude by making a prospect on biomorphic mineralization and biomorphic material, which is the product of close conversations between human and nature and the product of close co-operation between scientists from diverse fields.  相似文献   

14.
15.
16.
17.
18.
Can a wide range of complex biochemical behaviour arise from repeated applications of a highly reduced class of interactions? In particular, can the range of DNA manipulations achieved by protein enzymes be simulated via simple DNA hybridization chemistry? In this work, we develop a biochemical system which we call meta-DNA (abbreviated as mDNA), based on strands of DNA as the only component molecules. Various enzymatic manipulations of these mDNA molecules are simulated via toehold-mediated DNA strand displacement reactions. We provide a formal model to describe the required properties and operations of our mDNA, and show that our proposed DNA nanostructures and hybridization reactions provide these properties and functionality. Our meta-nucleotides are designed to form flexible linear assemblies (single-stranded mDNA (ssmDNA)) analogous to single-stranded DNA. We describe various isothermal hybridization reactions that manipulate our mDNA in powerful ways analogous to DNA–DNA reactions and the action of various enzymes on DNA. These operations on mDNA include (i) hybridization of ssmDNA into a double-stranded mDNA (dsmDNA) and heat denaturation of a dsmDNA into its component ssmDNA, (ii) strand displacement of one ssmDNA by another, (iii) restriction cuts on the backbones of ssmDNA and dsmDNA, (iv) polymerization reactions that extend ssmDNA on a template to form a complete dsmDNA, (v) synthesis of mDNA sequences via mDNA polymerase chain reaction, (vi) isothermal denaturation of a dsmDNA into its component ssmDNA, and (vii) an isothermal replicator reaction that exponentially amplifies ssmDNA strands and may be modified to allow for mutations.  相似文献   

19.
Many biological phenomena such as locomotion, circadian cycles and breathing are rhythmic in nature and can be modelled as rhythmic dynamical systems. Dynamical systems modelling often involves neglecting certain characteristics of a physical system as a modelling convenience. For example, human locomotion is frequently treated as symmetric about the sagittal plane. In this work, we test this assumption by examining human walking dynamics around the steady state (limit-cycle). Here, we adapt statistical cross-validation in order to examine whether there are statistically significant asymmetries and, even if so, test the consequences of assuming bilateral symmetry anyway. Indeed, we identify significant asymmetries in the dynamics of human walking, but nevertheless show that ignoring these asymmetries results in a more consistent and predictive model. In general, neglecting evident characteristics of a system can be more than a modelling convenience—it can produce a better model.  相似文献   

20.
The Humanoid Robotics Project of the Ministry of Economy, Trade and Industry of Japan realized that biped humanoid robots can perform manual labour. The project developed humanoid robot platforms, consisting of humanoid robot hardware and a package of fundamental software, and explored applications of humanoid robots on them. The applications include maintenance tasks of industrial plants, teleoperation of industrial vehicles, cooperative tasks with a human, guarding the home and office and the care of patients in beds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号