首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Ren YX  Nakano K  Nomura M  Chiba N  Nishimura O 《Water research》2007,41(11):2341-2348
The adsorption behaviors of estrone (E1), 17beta-estradiol (E2), estriol (E3), 17 alpha-ethinylestradiol (EE2), and equol were studied with a deactivated sludge subjected to heat treatment at 80 degrees C for 30 min. The heat-treatment hardly changed the adsorption features of activated sludge (AS). The adsorption equilibrium of all estrogens was approached within 10 min at 20 degrees C, and a high removal of estrogens was achieved simultaneously. The equilibrium data were well fitted by a Freundlich isotherm. The adsorption behaviors of E1, E2, E3 and EE2 in the AS system were independent of their Kow values. Thermodynamic analysis revealed that the adsorption behaviors of E1, E2, E3 and EE2 could be considered as an exothermic, physical and reversible process, resulting in their higher adsorption capacities at lower temperature. Regarding equol, its adsorption was an endothermic, chemical and irreversible process.  相似文献   

3.
Biological wastewater treatment plants (WWTP) are complex systems to assess. Many parameters are recorded daily in WWTP to monitor and control the treatment process, providing huge amounts of registered data. A combined approach of extracting information from the WWTP databases by statistical methods and from the sludge physico-chemical characterization was used here for a better understanding of the WWTP operation. The monitored parameters were analysed by multivariate statistical methods: Principal Components Analysis and multiple partial linear regression. The WWTP operational conditions determine the sludge characteristics. The bacterial activity of the sludge in terms of extra-cellular polymeric substances (EPS) production was assessed using size exclusion chromatography and the internal structure of sludge flocs was observed by confocal laser scanning microscopy. The diagnosis of three paper mill WWTP enabled the identification of an important EPS production, the presence of the nitrification process and the presence of PO43− nutrient in WWTP-A. These three main characteristics of WWTP-A were related with a systematically good sludge settling. In WWTP-B and C with bad settling, the bacterial activity was weak.  相似文献   

4.
Li WH  Sheng GP  Liu XW  Yu HQ 《Water research》2008,42(12):3173-3181
Three-dimensional excitation-emission-matrix (EEM) fluorescence spectrometry was used to characterize the extracellular and intracellular substances of activated sludge in a sequencing batch reactor (SBR). Parallel factor analysis (PARAFAC) was applied to extract the pure spectra from the overlapped spectra. Three main components, proteins, fulvic- and humic-like substances, were identified from the extracellular substances. Their fluorescence peaks were at an excitation/emission (Ex/Em) of 280/350, 340/400 and 390/450 nm, respectively. The fluorescence of the extracellular proteins had a similar changing pattern with the wastewater chemical oxygen demand, the fulvic-like substance did not vary significantly in a cycle and the humic-like substances accumulated in the substrate uptake phase but decreased later. Proteins and nicotinamide adenine dinucleotide, reduced form (NADH), were identified as the two main intracellular fluorophores, and their fluorescence peaks (Ex/Em) were at 280/340 and 350/450 nm, respectively. The fluorescence intensity scores of the intracellular fluorophores were closely related to the bioreactor performance. Thus, the results of this work provide a foundation for potential utilization of the EEM fluorescence spectroscopy to monitor the activated sludge systems for wastewater treatment.  相似文献   

5.
Zhang D  Li Z  Lu P  Zhang T  Xu D 《Water research》2006,40(14):2637-2644
Based on batch settling tests, a model describing the compression settling process of activated sludge was developed and validated by experiments. Furthermore, a theoretical equation for determining the critical point when the compression settling stage commences, and a new velocity function for the compression settling were deduced from the model. By combining the new model and the conservation of mass, it was proved that the Vesilind function was also capable of describing the compression settling velocity on condition that the appropriate parameters were estimated. Dividing the complete settling process of activated sludge into the zone settling and compression settling stages, and describing them by the Vesilind function with different parameter sets was more reasonable for characterizing the complete settling process of activated sludge. The method was applied to predict the sludge blanket height during batch settling tests, and the results showed that the settling processes could be simulated well.  相似文献   

6.
A rapid, robust and cost-effective method of assaying the metabolic activity of the biomass of activated sludge plants would be a valuable process control tool in the wastewater treatment industry. We have developed and optimised a simple colorimetric test protocol, based on the redox dye resazurin, in which levels of reduction of the dye are proportional to cell biomass and respiration rate in both freshly sampled municipal sludges and in a surrogate activated sludge culture, Polytox. The method has been used to assess the impact of trade wastes on the activities of two municipal activated sludge populations of differing characteristics.  相似文献   

7.
This study focuses on uncertainty analysis of WWTP models and analyzes the issue of framing and how it affects the interpretation of uncertainty analysis results. As a case study, the prediction of uncertainty involved in model-based design of a wastewater treatment plant is studied. The Monte Carlo procedure is used for uncertainty estimation, for which the input uncertainty is quantified through expert elicitation and the sampling is performed using the Latin hypercube method. Three scenarios from engineering practice are selected to examine the issue of framing: (1) uncertainty due to stoichiometric, biokinetic and influent parameters; (2) uncertainty due to hydraulic behaviour of the plant and mass transfer parameters; (3) uncertainty due to the combination of (1) and (2). The results demonstrate that depending on the way the uncertainty analysis is framed, the estimated uncertainty of design performance criteria differs significantly. The implication for the practical applications of uncertainty analysis in the wastewater industry is profound: (i) as the uncertainty analysis results are specific to the framing used, the results must be interpreted within the context of that framing; and (ii) the framing must be crafted according to the particular purpose of uncertainty analysis/model application. Finally, it needs to be emphasised that uncertainty analysis is no doubt a powerful tool for model-based design among others, however clear guidelines for good uncertainty analysis in wastewater engineering practice are needed.  相似文献   

8.
Kim YM  Chon DH  Kim HS  Park C 《Water research》2012,46(13):4292-4300
The goal of this study was to investigate the bacterial community in activated sludge with an anaerobic side-stream reactor (ASSR), a process permitting significant decrease in sludge production during wastewater treatment. The study operated five activated sludge systems with different sludge treatment schemes serving as various controls for the activated sludge with ASSR. Bacterial communities were analyzed by denaturing gradient gel electrophoresis (DGGE), sequencing and construction of phylogenetic relationships of the identified bacteria. The DGGE data showed that activated sludge incorporating ASSR contained higher diversity of bacteria, resulting from long solids retention time and recirculation of sludge under aerobic and anaerobic conditions. The similarity of DGGE profiles between ASSR and separate anaerobic digester (control) was high indicating that ASSR is primarily related to conventional anaerobic digesters. Nevertheless, there was also unique bacteria community appearing in ASSR. Interestingly, sludge in the main system and in ASSR showed considerably different bacterial composition indicating that ASSR allowed enriching its own bacterial community different than that from the aeration basin, although two reactors were connected via sludge recirculation. In activated sludge with ASSR, sequences represented by predominant DGGE bands were affiliated with Proteobacteria. The remaining groups were composed of Spirochaetes, Clostridiales, Chloroflexi, and Actinobacteria. Their putative role in the activated sludge with ASSR is also discussed in this study.  相似文献   

9.
A procedure has been developed for the determination of non-ionic surfactants (NS) adsorbed on particles of alive and dead activated sludge. The procedure also enables the determination of adsorption of major biodegradation by-products: short-chained ethoxylates, long- and short-chained PEG. The basis of measurement is the determination of NS concentration in a slurry of activated sludge and in a solution phase. The difference between these two concentrations represents the NS adsorbed on activated sludge. Separation of NS and their biotransformation by-products from samples and then on narrower fractions was performed by a sequential liquid-liquid extraction and precipitation with modified Dragendorff reagent. The indirect tensammetric technique (ITT) was applied for the final determination. The developed method was checked using the example of the treatment of the surfactant C12E10 (oxyethylated fatty alcohol) (C12E10) in the continuous flow activated sludge facility. No statistically significant accumulation of C12E10 on the alive activated sludge was detected, probably because of faster C12E10 fission than its adsorption. However, significant adsorption of the short-chained ethoxylates (including free alcohol) on the alive activated sludge was found, as well as statistically significant adsorption of long- and short-chained PEG. The adsorption of surfactant C12E10 and its biodegradation by-products on dead activated sludge was found to be higher than the species adsorption on alive activated sludge.  相似文献   

10.
Tandukar M  Ohashi A  Harada H 《Water research》2007,41(12):2697-2705
This study compares the performance of a pilot-scale combination of UASB and DHS system to that of activated sludge process (ASP) for the treatment of municipal sewage. Both systems were operated in parallel with the same sewage as influent. The study was conducted for more than 300 days, which revealed that organic removal efficiency of UASB+DHS system was comparable to that of ASP. Unfiltered BOD removal by both systems was more than 90%. However, UASB+DHS system outperformed ASP for pathogen removal. In addition, volume of excess sludge production from UASB+DHS was 15 times smaller than that from ASP. Moreover, unlike ASP, there is no requirement of aeration for the operation of UASB+DHS system, which makes it an economical treatment system. Considering the above observations, it was concluded that UASB+DHS system can be a cost-effective and viable option for the treatment of municipal sewage over ASP, especially for low-income countries.  相似文献   

11.
The release of nanoparticles (NPs) into the environment, including wastewater treatment plants, is expected to increase in the future. Therefore, it is important to understand the potential effects of these NPs on activated sludge treatment processes. A pulse-flow respirometer was used to study the toxicity of nano-ZnO on activated sludge endogenous respiration, BOD biodegradation, and nitrification. In addition, toxicities of bulk ZnO particles and Zn ion (e.g. soluble Zn) were also studied. All three Zn forms were found to adversely impact the activity of activated sludge, with soluble Zn exhibited the greatest toxicity. The effects of nano-ZnO and bulk ZnO on activated sludge were caused by soluble Zn resulting from ZnO particle dissolution. The IC50 values of soluble Zn on activated sludge endogenous respiration, BOD biodegradation, ammonia oxidation, and nitrite oxidation were 2.2, 1.3, 0.8, and 7.3 mg-Zn/L, respectively. Therefore, the first step of nitrification was most sensitive to Zn.  相似文献   

12.
This study investigated the effect of feeding pattern on bacterial storage under anoxic conditions, emphasizing previous adaptation of biomass to a long term feeding condition, under steady-state operation. Storage was evaluated in a sequencing batch reactor (SBR) system operated in a sequence of anoxic/aerobic phases, fed with acetate as the sole carbon source during anoxic conditions. The experimental results indicated that biochemical storage of acetate as PHB occurred when substrate was fed as a pulse, while acetate was removed mostly through direct microbial growth under continuous feeding. For pulse feeding, the anoxic yield, Y(STOD) was calculated as 0.58mg COD (mgCOD)(-1) in two different ways, using mass balances on acetate utilization, PHB generation and nitrate consumption. This value was supported by parallel batch tests and similar results in the literature. Similarly, the rate coefficient for storage under anoxic conditions, k(STOD) was computed as 9.3day(-1) based on basic stoichiometry and model calibration of experimental data. Batch tests conducted with biomass adapted to different feeding patterns showed that substrate storage was insignificant when the feed was added continuously at low concentrations, even if the biomass was previously adapted to storage. Similarly biomass acclimated to continuous feeding could not store the excess substrate although fed instantly. For the operating conditions selected for the study, storage response was significant only with a microbial culture with metabolic activities previously adapted to storage and with short-term substrate feeding at high concentrations.  相似文献   

13.
Membrane bioreactors (MBRs) have been increasingly employed for municipal and industrial wastewater treatment in the last decade. The efforts for modelling of such wastewater treatment systems have always targeted either the biological processes (treatment quality target) as well as the various aspects of engineering (cost effective design and operation). The development of Activated Sludge Models (ASM) was an important evolution in the modelling of Conventional Activated Sludge (CAS) processes and their use is now very well established. However, although they were initially developed to describe CAS processes, they have simply been transferred and applied to MBR processes. Recent studies on MBR biological processes have reported several crucial specificities: medium to very high sludge retention times, high mixed liquor concentration, accumulation of soluble microbial products (SMP) rejected by the membrane filtration step, and high aeration rates for scouring purposes. These aspects raise the question as to what extent the ASM framework is applicable to MBR processes. Several studies highlighting some of the aforementioned issues are scattered through the literature. Hence, through a concise and structured overview of the past developments and current state-of-the-art in biological modelling of MBR, this review explores ASM-based modelling applied to MBR processes. The work aims to synthesize previous studies and differentiates between unmodified and modified applications of ASM to MBR. Particular emphasis is placed on influent fractionation, biokinetics, and soluble microbial products (SMPs)/exo-polymeric substances (EPS) modelling, and suggestions are put forward as to good modelling practice with regard to MBR modelling both for end-users and academia. A last section highlights shortcomings and future needs for improved biological modelling of MBR processes.  相似文献   

14.
Biosorption of humic and fulvic acids to live activated sludge biomass   总被引:6,自引:0,他引:6  
Biosorption of high molecular weight humic substances (HS) to activated sludge (AS) biomass may be considered as a preliminary step previous to enzymatic hydrolysis breakdown and biological uptake. Two standard HS, Suwannee River humic and fulvic acids, were biosorbed onto live AS biomass collected from full-scale wastewater treatment plants. Biosorption isotherms were corrected for interference from organic matter desorbed from AS biomass. The effect of pH, calcium and ionic strength on biosorption was tested. HS biosorption to live AS biomass obeyed the Freundlich isotherm equation. Biosorption increased with decreasing pH, increasing calcium and ionic strength concentration. Higher biosorption at low pH may be attributed to hydrophobic interactions between HS and AS biomass extracellular polymers (EPS). Hydrophobic and cationic bridging effects between HS and AS EPS were the mechanisms responsible for biosorption under the presence of divalent cations; however, the former was most significant at low pH, whereas the latter was predominant near neutral pH. The effect of ionic strength on HS biosorption followed the colloidal chemistry theory as the electric double layer became compressed when the ionic strength increased, resulting in closer approach of HS and AS biomass. The humic acid fraction of Suwannee River was removed more efficiently than its fulvic acid fraction because the humic acid was more hydrophobic. These results showed that pH, divalent cation concentration and ionic strength play an important role in the fate and removal of influent wastewater HS in full-scale treatment plants.  相似文献   

15.
Fate of linear alkylbenzene sulfonate (LAS) in activated sludge plants   总被引:3,自引:0,他引:3  
Monitoring data were collected in a pilot-scale municipal activated sludge plant to assess the fate of the C12-homologue of linear alkyl benzene sulfonate (LAS-C12). The pilot-plant was operated at influent LAS-C12 concentrations between 2 and 12 mg l(-1) and at sludge retention times of 10 and 27 days. Effluent and waste sludge concentrations varied between 5 and 10 microg l(-1) and between 37 and 69 microg g(-1) VSS, respectively. In the sludge samples only 2-8% was present as dissolved LAS-C12, whereas the remaining 92-98% was found to be adsorbed to the sludge. In spite of this high degree of sorption, more than 99% of the LAS-C12 load was removed by biodegradation, showing that not only the soluble fraction but also the adsorbed fraction of LAS-C12 is readily available for biodegradation. Sorption and biodegradation of LAS-C12 were also investigated separately. Sorption was an extremely fast and reversible process and could be described by a linear isotherm with a partition coefficient of 3.2 l g(-1) volatile suspended solids. From the results of biodegradation kinetic tests it was concluded that primary biodegradation of LAS-C12 cannot be described by a (growth) Monod model, but a secondary utilisation model should be used instead. The apparent affinity of the sludge to biodegrade LAS-C12 increased when the sludge was loaded with higher influent concentrations of LAS-C12.  相似文献   

16.
This paper investigates the removal of formic acid by unacclimated biomass from a municipal activated sludge wastewater treatment plant. The biomass was initially able to remove formic acid, but its removal rate and Oxygen Uptake Rate (OUR) decreased with time, until formic acid removal stopped before the formic acid had been exhausted. Formaldehyde was removed in a similar way, whereas the same biomass was simultaneously able to grow and store PHAs when acetic acid was used as substrate.Batch tests with glycine and 13C NMR analysis were performed, showing that unacclimated biomass was not able to synthesize all the metabolic intermediates from formic acid alone. At least glycine needed to be externally supplemented, in order to activate the serine synthesis pathway. A small amount of formic acid removal in the absence of growth was also possible through formaldehyde formation and its further conversion to formalin (1,2-formaldehyde dimer), whereas no PHAs were formed.  相似文献   

17.
One of the important aspects of the models used for wastewater sludge transport is the determination of energy loss when pumped on long distances. In the literature, two types of non‐Newtonian fluids, the Bingham plastic and the pseudoplastic fluids, have been assumed and received special attention. Based on these two classifications, formulae are derived for the design of pipelines. The purpose of this investigation is to evaluate the existing models for characterising the non Newtonian properties of wastewater sludge and to investigate the effect due to the testing scale of the experimental facilities. As a result, the statistical analysis of the examined data provide useful information for the adequacy of these models.  相似文献   

18.
The occurrences, transformation of antibiotics in biological wastewater treatment plants have attracted increasing interests. However, roles of extracellular polymeric substances (EPS) of activated sludge on the fate of antibiotics are not clear. In this study, the roles of EPS in the migration and removal of one typical antibiotic, sulfamethazine (SMZ), in activated sludge process were investigated. The interaction between EPS and SMZ was explored through a combined use of fluorescence spectral analysis, laser light scattering and microcalorimetry techniques. Results show that SMZ interacted with the proteins in EPS mainly with a binding constant of 1.91 × 105 L/mol. The binding process proceeded spontaneously, and the driving force was mainly from the hydrophobic interaction. After binding, the structure of EPS was expanded and became loose, which favored the mass transfer and pollution capture. The removal of SMZ was influenced by interaction with EPS. SMZ could be effectively adsorbed on EPS, which accounted for up to 61.8% of total SMZ adsorbed by sludge at the initial adsorption stage and declined to around 35.3% at the subsequent biodegradation stage. The enrichment of SMZ by EPS was beneficial for SMZ removal and acquisition by microbes at the subsequent biodegradation stage.  相似文献   

19.
Quesnel D  Nakhla G 《Water research》2005,39(4):677-687
An industrial wastewater that was pretreated by an aerobic thermophilic bacterial consortium (THE) was subjected to additional treatability studies by granular activated carbon (GAC) and a conventional activated sludge (CAS). The removal of dissolved organic carbon (DOC) in both systems was generally found to be similar. While GAC was able to attain better effluent concentrations of toluene and methyl isobutyl ketone (MIBK), the CAS was much more efficient at removing acetone. Furthermore, unlike the GAC, the performance of the CAS was not influenced by the high degree of variability in the influent wastewater. Characterization of the influent thermophilic wastewater using gas chromatography-mass spectroscopy (GC/MS) was performed to quantify the micropollutants as well as to evaluate removal efficiencies from the GAC and CAS systems.  相似文献   

20.
Ni BJ  Fang F  Xie WM  Yu HQ 《Water research》2008,42(16):4261-4270
The autotrophs in activated sludge play an important role in biological wastewater treatment, especially in the nitrification process. Compared with the heterotrophs in activated sludge, information about the growth, maintenance, and product formation of the autotrophs is still sparse. In this work both experimental and modeling approaches are used to investigate the growth, nitrite inhibition, maintenance, and formation of extracellular polymeric substances (EPS) and soluble microbial products (SMP) of the autotrophs, with nitrite-oxidizing bacteria (NOB) in activated sludge as an example. The unified theory for EPS and SMP is integrated into our model to describe the microbial product formation of the NOB. Extensive experiments were carried out using the NOB-enriched in a sequencing batch reactor for the calibration and validation of the developed model. Results show that the NOB spend a considerable amount of energy on maintenance processes. Their apparent growth yield is estimated to be 0.044 mg COD biomass mg−1 N. The model simulations reveal that the concentrations of EPS and SMP in the NOB-enriched culture initially increase, but later decrease gradually, and that the SMP formed in the nitrite oxidation process are biodegradable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号