首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
共振解调与小波降噪在电机故障诊断中的应用   总被引:1,自引:0,他引:1  
针对异步电机形成复合故障时电流频谱存在的故障频率成分难以准确分离的问题,结合小波降噪算法与共振解调技术,提出一种异步电机复合故障分离方法.依托小波优良的时频局部化特性,有效地区分信号中的突变部分和噪声,实现信号的降噪;利用软件方法实现共振解调,构造带通滤波器提取共振信息.利用Hilbert变换进行解调分析得到包含故障特征信息的低频包络信号,经过低通滤波、频谱分析后实现异步电机耦合故障分离和故障特征提取.实验结果表明,该方法使复合故障情况下的异步电机电流信号的故障特征频率更容易识别和分离.  相似文献   

2.
灰色关联分析已应用于电力变压器故障诊断,传统基于单一故障标准模式向量灰色关联分析算法的油中溶解气体分析(DGA)诊断模型精度有限.为此,提出一种改进型灰色关联算法,该算法在充分考虑DGA数据分散性的基础上,将每类故障的标准故障模式向量由原来算法中的1个扩充到6个,并给出每类故障的DGA数据分布范围,增大诊断信息量;利用关联分析原理,求出待诊模式与各类故障标准模式的灰色关联度,得到故障诊断判定.实例分析证明,所提算法的诊断准确率高于原来的普通灰色关联方法.  相似文献   

3.
滚动轴承故障冲击特征易被工频载波信号淹没,而传统的信号降噪方法对工频干扰不具有针对性,所以将工频陷波理论引入到轴承故障诊断中。由于陷波的窄带滤波特性,其对中心频率及带宽参数变化较为敏感,通过粒子群多参数寻优,以时域峭度最大原则对陷波器中心频率及带宽进行自适应选取,以时域波形匹配方差作为评价指标验证陷波对故障冲击特性的还原能力。试验分析表明自适应陷波可以有效地从工频调制信号中解调出故障冲击特征,对陷波后信号进行包络谱分析,其故障特征谱线得到增强,辅助以集合经验模态分解(EEMD)、变分模态分解(VMD)去噪方法,可以得到更理想的效果。  相似文献   

4.
滚动轴承处于早期故障阶段时,特征信号微弱,并且受环境噪声影响严重,因此故障特征提取困难。针对这一问题,提出了基于自适应最大相关峭度解卷积的滚动轴承早期故障诊断方法。利用粒子群算法优良的寻优特性,并行搜寻最大相关峭度解卷积算法的影响参数,自适应地实现最佳的解卷积效果。故障信号通过影响参数优化的最大相关峭度解卷积算法处理后,冲击特性会得到增强,对解卷积信号做进一步包络解调分析,通过分析包络谱中幅值突出的频率成分可最终判定故障类型。仿真和实测信号分析结果表明,该方法可有效提取滚动轴承早期故障微弱特征频率信息。  相似文献   

5.
杨瑞 《电力建设》2005,26(9):19-0
火电厂中,滚动轴承是磨煤机和各种电力设备中应用最广的一种通用机械部件。滚动轴承的运行状况直接影响电厂设备的安全、可靠运行。频谱分析技术诊断滚动轴承故障的原理是通过保持架、滚动体、内圈、外圈缺陷的故障频率计算,可求得滚动轴承各部件的故障频率,从而判断发生故障的部件。滚动轴承故障的发展有4个阶段,从各阶段的表现对应目前滚动轴承故障状况可了解目前轴承所处的状态。  相似文献   

6.
分析了基于灰色关联分析的几种故障诊断理论,并给出了诊断实例.  相似文献   

7.
WiMAX在风力发电故障诊断系统中的应用   总被引:2,自引:0,他引:2  
风电场要具备一定的故障诊断能力,而其故障诊断的准确性主要取决于风力发电故障诊断系统的通信网络。以风力发电故障诊断系统中的通信网络为研究对象,采用全球微波接入互操作性(WiMAX)技术传输风力发电机组与监控端之间的预兆故障特征数据。WiMAX具有传输速率高、传输距离远、抗干扰能力强、保密性好等技术优点,因此在链路存在干扰的情况下仍然可以准确地传输数据。对该系统进行了WiMAX组网设计,同时使用网络仿真软件OPNET14.5对WiMAX的抗干扰性能进行仿真论证,结果表明WiMAX技术具有良好的抗干扰能力,适用于风力发电故障诊断系统。  相似文献   

8.
小波包分析在滚动轴承故障诊断中的应用   总被引:3,自引:0,他引:3  
结合小波包分析和能量谱分析方法 ,提出一种新的滚动轴承故障诊断方法。利用小波包对滚动轴承振动加速度信号进行分解 ,求出各频率段的能量 ,并以此作为滚动轴承发生故障的特征量对振动信号进行重构 ,比较正常信号和故障信号的差异 ,从而识别滚动轴承的故障。通过对于实测信号的分析证明该方法具有特征参量少、故障特征突出等优点 ,可有效地用于滚动轴承的故障诊断。  相似文献   

9.
尖峰能量法在岭澳核电站滚动轴承故障诊断中的应用   总被引:1,自引:0,他引:1  
滚动轴承是机器最易损坏的零件之一.据统计,约有三分之一的旋转机械故障是由滚动轴承引起的.本文详细介绍了尖峰能量法的含义及信号处理过程,以及尖峰能量法在滚动轴承故障诊断中的表现,通过具体实例分析,总结出适用于岭澳核电站滚动轴承故障诊断的一套方法,为核电机组安全运行提供了可靠保证.  相似文献   

10.
张继芳 《变压器》2017,54(10):33-36
本文中作者介绍了灰色关联度分析的计算方法,分析了改进型灰色关联算法的基本原理,结合实例对改进型灰色关联算法在变压器故障诊断中的应用进行了研究。  相似文献   

11.
为实现风电机组滚动轴承微弱故障诊断,提出了基于改进的时时(ITT)变换的风电机组滚动轴承故障诊断方法。由时时(TT)变换可得到一维轴承故障振动信号的TT变换矩阵,实现滚动轴承振动信号的二维TT表示。提取该TT变换矩阵的对角线元素可滤除低频干扰信号,起到增强故障特征的效果。鉴于噪声对TT变换分析效果具有重要影响,提出基于能量熵准则的奇异值分解降噪方法改进TT变换,以提高TT变换的抗噪能力,实现强背景噪声条件下轴承微弱故障特征提取。仿真、实验及工程应用实例结果均表明所提方法可以有效诊断出风电机组滚动轴承的故障类型。  相似文献   

12.
基于贝叶斯推断LSSVM的滚动轴承故障诊断   总被引:4,自引:3,他引:4  
针对传统最小二乘支持向量机分类器的参数选择具有随意性和不确定性等不足,采用贝叶斯推断方法通过三级分层推断优化确定最小二乘支持向量机的各参数,有效提高了最小二乘支持向量机的建模效率.将基于贝叶斯推断最小二乘支持向量机分类方法应用于滚动轴承故障诊断中,实验仿真结果表明该方法能有效地识别滚动轴承的故障,且训练时间和测试时间均小于传统最小二乘支持向量机方法。  相似文献   

13.
滚动轴承是风电机组中故障最为频繁的部件之一,准确有效的轴承故障诊断方法有助于保障风电机组安全稳定运行。针对轴承振动信号特征微弱、难以诊断的问题,提出了一种基于改进降噪自编码器的风电机组轴承故障检测方法。首先引入了一维信号的图像化预处理,将原始的时域信号转化为二维特征灰度图。然后利用卷积神经网络在图像特征提取上的强大优势,构建了堆叠降噪自编码器与卷积神经网络的集成模型,去除了传统卷积神经网络中的池化层,进一步提升提取特征的鲁棒性和泛化性。整体诊断流程由数据驱动,减少了对于经验的依赖。最后的实验结果表明,该方法能够精确诊断不同类型的轴承故障。此外,通过与其他方法的对比实验进一步验证了该方法在故障诊断方面的优越性。  相似文献   

14.
针对强噪声、跨工况场景下数据分布差异导致传统卷积神经网络(CNN) 模型泛化性能低、诊断能力不足的问题,提出 一种基于并行卷积核和通道注意力机制的滚动轴承故障诊断方法。构造了带有不同尺度卷积核的并行网络结构,可以在抑 制噪声干扰的同时有效提取出数据中的故障特征信息;融合通道注意力机制对卷积层特征提取能力进行增强,提升模型抗噪 性能以及跨工况负载下的自适应诊断能力。利用凯斯西储大学轴承数据集训练并测试诊断效果,将该方法与其他方法进行 了性能对比。结果表明,在跨工况不同负载情况下,所提方法的诊断平均准确率为97.3%,在不同信噪比噪声干扰情况下的 诊断精度平均达93.8%,均高于其他比较方法,所提出的方法在复杂多变工况下具有良好的抗噪性能和泛化能力。  相似文献   

15.
提出了一种基于复局部均值分解(CLMD)和复信号包络谱(CSES)的滚动轴承故障诊断新方法。首先通过互相垂直安装的加速度传感器采集2个方向的振动信号,并将其组成一个复数信号;然后利用CLMD对二元复数信号进行自适应分解,将分解得到的复数信号的实部和虚部包络信号组成一个复包络信号,根据复傅里叶变换具有幅值增强和综合频率特性,直接对复包络信号进行复傅里叶变换,提取的故障特征频率更为清晰。通过滚动轴承不同位置的外圈故障实验,证明了所提方法能够实现故障特征增强,可用于诊断滚动轴承微弱故障和复合故障。  相似文献   

16.
针对传统浅层轴承故障诊断方法依赖于人工特征提取和诊断专业知识从而缺乏自适应性问题,结合卷积神经网络善于识别二维形状的特点,提出一种基于深度卷积神经网络的故障诊断方法(DCNN)。首先,为充分展现滚动轴承故障特征信息,利用短时傅里叶变换得到滚动轴承振动时间序列的二维时频谱;其次,通过卷积神经网络自适应提取时频谱中不同故障特征;最后,将提取的轴承故障特征利用Softmax分类器输出诊断结果,实现轴承故障诊断。通过实测故障轴承数据对该方法进行验证,结果表明DCNN在多故障、变负载的轴承故障诊断准确率高达99.9%,证明了所提方法具有良好的泛化性能和可行性。  相似文献   

17.
为了提高自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)的分解能力和分解精度,解决CEEMDAN方法中噪声残留等问题,提出了一种改进的CEEMDAN方法——自适应噪声均值优选集成经验模态分解...  相似文献   

18.
针对非线性支持向量机分类准确率受核函数影响的问题,提出一种多尺度核支持向量机(multi-scale kernel support vector machine, MSK-SVM)分类模型,并将该模型应用于滚动轴承故障诊断。该模型在常用的多项式核、高斯核和Sigmoid核函数基础上,引入了Morlet、Marr和DOG小波核函数。利用不同核函数的全局性和局部性以及核函数尺度参数不同作用范围不同的特点,组合具有不同特性及不同尺度参数的核函数作为多尺度核。基于梯度下降法,自适应地确定多尺度核函数权值,得到MSK-SVM滚动轴承故障诊断模型。为说明算法有效性,分别基于滚动轴承故障数据集和全寿命周期数据集进行了实验验证,并分析了基于不同特性MSK和相同特性MSK的SVM模型分类性能。结果表明本文所提模型较传统单个核函数SVM分类准确率更高,且具有良好的泛化能力。  相似文献   

19.
徐涛  张现清 《中国电力》2003,36(11):85-87
介绍邹县发电厂成功运用CSI机械分析仪和RBMware软件,检测和诊断l号炉丙排粉机滚动轴承故障情况,通过故障的早期发现、分析和诊断结果,证明了早期故障诊断的重要性,避免设备损坏事故的发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号